High Q1 Fluence Low-Power Laser Irradiation Induces Mitochondrial Permeability Transition Mediated by Reactive Oxygen Species

SHENGNAN WU,1 DA XING,1*, XUEJUAN GAO,1 AND WEI R. CHEN1,2

1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou, China
2Biomedical Engineering Program, Department of Engineering and Physics, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma

High fluence low-power laser irradiation (HF-LPLI) can induce cell apoptosis via the mitochondria/caspase-3 pathway. Here, we further investigated the mechanism involved in the apoptotic process in human lung adenocarcinoma cells (ASTC-a-1) at a laser irradiation fluence of 120 J/cm² (633 nm). Cytochrome c release was ascribed to mitochondrial permeability transition (MPT) because the release was prevented by cyclosporine (CsA), a specific inhibitor of MPT. Furthermore, mitochondrial permeability for calcium (~620 Da) was another evidence for the MPT induction under HF-LPLI treatment. A high-level intracellular reactive oxygen species (ROS) generation was observed after irradiation. The photodynamically produced ROS caused onset of MPT, as the ROS scavenger docosahexaenoic acid (DHA) prevented the MPT. However, CsA failed to prevent cell death induced by HF-LPLI, indicating the existence of other signaling pathways. Following laser irradiation, Bax activation occurred after mitochondrial depolarization and cytochrome c release, indicating Bax activation was a downstream event. In the presence of CsA, Bax was still activated at the end-stage of apoptotic process caused by HF-LPLI, suggesting that Bax was involved in an alternative-signaling pathway, which was independent of MPT. Under HF-LPLI treatment, cell viabilities due to pre-treatment with DHA, CsA, or Bax small interfering RNA (siRNA) demonstrated that the MPT signaling pathway was dominant, while Bax signaling pathway was secondary, and more importantly ROS mediated both pathways. Taken together, these results showed that HF-LPLI induced cell apoptosis via the CsA-sensitive MPT, which was ROS-dependent. Furthermore, there existed a secondary signaling pathway through Bax activation. The observed link between MPT and triggering ROS could be a fundamental phenomenon in HF-LPLI-induced cell apoptosis.

Low-power laser irradiation (LPLI) has been shown to modulate various biological processes (Karu, 1989), such as cell proliferation and differentiation (Nadav et al., 1999), cell viability (Lubart et al., 2005), and cell apoptosis (Wang et al., 2005). It can induce changes in reactive oxygen species (ROS) production, Ca²⁺ concentration, mitochondrial transmembrane potential (ΔΨm), intracellular pH (Alexandrou et al., 2002), and ATP quantity (Passarella et al., 1984). The biological effects of LPLI rely upon some proteins, such as protein kinase Cs (PKC) (Gao et al., 2006), extracellular signal-regulated kinase (ERK), protein kinase B (Akt/PI3K), CyclinD1 (Shefer et al., 2001), platelet-derived growth factor (PDGF), interleukin-8/1α (IL-8/1α) (Yu et al., 1994), vascular endothelial growth factor (VEGF) (Kipshidze et al., 2001), and nerve growth factor (NGF) (Fidi et al., 2002).

When cells were treated with LPLI at 0.5–0.8 J/cm², a typical low fluence dosage, proliferation of human lung adenocarcinoma (ASTC-a-1) cells was observed, while at 60 J/cm², a typical high fluence dosage, cell apoptosis was observed (Ga o et al., 2006). Early results obtained by Zhang et al. (2008) showed an increased viability in HeLa cells treated with LPLI at 3–15 J/cm²; irradiation at 25–50 J/cm² evidently decreased the cell viability and caused cell morphologic damage. LPLI at high fluence interfered with cell cycling and inhibited cell proliferation, thus could be used to control certain types of hyperplasia (Gross and Jelkmann, 1990; O’Kane et al., 1994; Ocana-Quero et al., 1998). This phenomenon is consistent with our early results of induced ASTC-a-1 cell apoptosis when irradiated with a fluence between 60 and 120 J/cm², and its dependence on the dosage of laser irradiation (Wang et al., 2005). For the mechanism studies, recent works by Wu et al. (2007) showed that high fluence low-power laser irradiation (HF-LPLI) (80, 120 J/cm²) induced cell apoptosis via the mitochondrial signaling pathway (mitochondria/caspase-3), accompanied by a large amount of ROS generation in both ASTC-a-1 cells and transformed African green monkey kidney fibroblast (COX-7) cells. The definition for high or low fluence for LPLI is not clear. We refer to a high fluence irradiation when an obvious inhibition of cell viability is observed (Wang et al., 2005; Wu et al., 2007) in order to distinguish the proliferation effect of low fluence LPLI, which has been reported previously (Karu, 1989).

Abbreviations: ASTC-a-1, human lung adenocarcinoma cells; CsA, cyclosporine; CCK-8, cell counting kit-8; DHA, docosahexaenoic acid; GSK3, glycogen synthase kinase; H2DCFDA, dichlorodihydrofluorescein diacetate; HF-LPLI, high fluence low-power laser irradiation; MPT, mitochondrial permeability transition; OMMP, outer mitochondrial membrane permeabilization; PDT, photodynamic treatment; ROS, reactive oxygen species; TMRM, tetramethylrhodamine methyl esters; ΔΨm, mitochondrial transmembrane potential.

Contract grant sponsor: National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province; Contract grant numbers: 30627003, 30870676, 7117865.

*Correspondence to: Da Xing, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China. E-mail: xingda@scnu.edu.cn

Received 1 June 2008; Accepted 8 October 2008

Published online in Wiley InterScience (www.interscience.wiley.com.), 00 Month 2008. DOI: 10.1002/jcp.21636
The mechanism of apoptosis induced by HF-LPLI is still not well understood. Such mechanism is necessary for the clinical applications of low-power laser therapies. It can provide a new stimulator to trigger cell apoptosis, since it is well-known that apoptosis plays an important role in physiological and pathological conditions (Steven et al., 2000; Ferreira et al., 2002). Furthermore, it can be used to treat some kind of hyperplasia (Gross and Jelkmann, 1990; O’Kane et al., 1994; Ocana-Quero et al., 1998) and to treat cancers, like photodynamic treatment (PDT) (Sharman et al., 1999) in the absence of photosensitizers.

Mitochondrial injury is central to apoptosis (Green and Reed, 1998). The permeabilization of outer mitochondrial membrane leads to the release of apoptogenic factors (Kroemer et al., 2006). In general, two non-exclusive models have been proposed for the mechanism of outer mitochondrial membrane permeabilization (OMMP) (Kroemer et al., 2006). In one, pro-apoptotic members of the Bcl-2 family act to create discontinuities (perhaps pores) in the outer mitochondrial membrane, without affecting the functions of the inner membrane or matrix (Wills et al., 2003). In another, a variety of signals, such as Ca\(^{2+}\) (Jacobson and Duchen, 2002) and ROS (Zorott et al., 2000; Jacobson and Duchen, 2002), trigger the opening of small channels on the inner mitochondrial membrane, allowing water to enter and swell the matrix, effectively bursting the outer membrane, an effect referred to as the mitochondrial permeability transition (MPT) (Kim et al., 2003; Zorott et al., 2005).

Zorott et al. (2000) reported that mitochondrial triggered ROS generation via photoactivation of tetramethylrhodamine derivatives could induce MPT, since they observed increased ROS production at sites of spontaneously de-energized mitochondria. Jacobson and Michael developed a model in which an intramitochondrial photosensitizing agent was used to explore the consequences of mitochondrial ROS generation for mitochondrial function and cell fate in primary cells (Jacobson and Duchen, 2002). They found that in astrocytes the interplay between mitochondrial ROS and endoplasmic reticulum (ER) sequestered Ca\(^{2+}\) increased the frequency of transient mitochondrial depolarizations and caused mitochondrial Ca\(^{2+}\) loading from ER stores. The depolarizations were attributed to the opening of the mitochondrial permeability transition pore (MPTP) (Jacobson and Duchen, 2002). Agents, such as cyclosporin (CsA) and bongkrekic acid (BA), that blocked the MPT could also block apoptosis (Kroemer et al., 2006). Both models have been widely used to explain OMMP in apoptosis via the mitochondrial pathway (Kroemer et al., 2006).

Mitochondria are both a major source of ROS and a target for their damaging effects due to ROS. Oxidants stimulate, while antioxidants inhibit, apoptosis, suggesting a role for ROS as initiators or downstream mediators of apoptosis (Jacobson, 1996). Recent studies showed that HF-LPLI induced a high-level intracellular ROS generation (Wu et al., 2007). Understanding the roles of ROS in both normal and pathological conditions has led to renewed interest in mitochondrial functions.

Combining the two facts that intracellular ROS generation induces MPT and HF-LPLI triggers a large amount of ROS generation, we speculate that HF-LPLI induces cell apoptosis mediated by MPT induction. Using fluorescent image techniques, we further investigate the mitochondrial mechanism of cell apoptosis induced by HF-LPLI.

Materials and Methods

Cell culture

ASTC-a-1 cells were grown on 22 mm culture glasses, in Dulbecco’s modified Eagle’s medium (DMEM, Life Technologies Co. Ltd.) supplemented with 15% fetal bovine serum (FBS) (GIBCO Co. Ltd.), 50 units/ml penicillin, and 50 µg/ml streptomycin, 5% CO\(_2\), 95% air at 37°C in a humidified incubator. In all experiments, 70–85% confluent cultures were used.

HF-LPLI treatment

For irradiation of cells, a 633 nm He–Ne laser inside a confocal laser scanning microscope (LSM510-Confocor2) (Zeiss, Jena, Germany) was used. Laser irradiation was performed through the objective lens (100x/NA1.45) of the inverted microscope in laser scanning mode. In this setup, only the cells under observation were irradiated by the laser. The output laser power through the objective lens was 4.3 µW (633 nm), which was measured by a power meter when acousto-optical tunable filter (AOTF) was set as 100%. The cells in selected area were irradiated for 10 min with the fluence of 120 J/cm\(^2\). The power intensity was kept as 0.2 W/cm\(^2\) by changing the AOTF (%) and irradiation area. For fluorescent imaging, the excitation laser powers were 0.2875 µW for 488 nm, 0.0479 µW for 458 nm, and 0.0534 µW for 543 nm. A mini-type culture chamber with CO\(_2\) supply (Tempcontrol 37-2 digital, Zeiss, Germany) was used to keep cells under normal culture conditions (37°C, 5% CO\(_2\)) during irradiation.

Chemicals

The following fluorescent probes were used: dichlorodihydrofluorescein diacetate (H\(_2\)DCFDA, 10 µM) to detect the generation of ROS, calcein AM (1 µM) to monitor MPT, rhodamine 123 (5 µM), and tetramethylrhodamine methyl esters (TMRM) (100 nM) to monitor ΔΨm. All the probes were purchased from Molecular Probes (MP). The optimal incubation time for each probe was determined experimentally.

The following reagents were used: CsA (5 µM) to inhibit MPT, docosahexaenoic acid (DHA) (100 µM) to scavenge ROS, CoCl\(_2\) (1 mM) to quench the fluorescence of calcein, CaCl\(_2\) (200 mM) to induce MPT. These reagents were purchased from Sigma–Aldrich (St. Louis, MO). We used LipofectamineTM 2000 reagent (Invitrogen Life Technologies, Inc. Grand Island, NY) to transfect plasmid DNA and small interfering RNA (siRNA) into cells. Cells were examined 36–48 h after transfection.

Bax gene silencing by siRNA

RNA interference of Bax was performed using 24-bp siRNA duplexes purchased from Gene Pharma (Shanghai, China). The sense strand nucleotide sequence for Bax siRNA was AACATGGAGCTGAGAGGATGAdTdT. A control siRNA specific to the GFP DNA sequence CCACCTCTGAGCAGGAGGCTGAdTdT. A control siRNA duplexes purchased from Gene Pharma (Shanghai, China) was used as a negative control. For transfection, ASTC-a-1 cells were seeded in six-well plates at 30% confluency, and siRNA duplexes (200 nmol/L) were introduced into the cells using LipofectamineTM 2000 according to the manufacturer’s recommendations. Assays were performed 48 h after transfection. The protein levels of Bax were detected in the cell lysate by Western Blot.

MPT monitoring

MPT was monitored using a calcein–Co\(^{2+}\) technique (Kroemer et al., 2006). This method relies on the loading of cells with the fluorescent probe calcein (~620 Da) and its quencher, Co\(^{2+}\). Co\(^{2+}\) was added to cells 1 h before experiment and calcein AM was loaded to cells 30 min before experiment. After attainment of quenching, cells were washed free of calcein AM and Co\(^{2+}\) in order to remove the sections in the medium. When loaded into cells in its acetoxymethyl ester form, calcein was trapped in all subcellular compartments, including mitochondria, whereas Co\(^{2+}\) was excluded from mitochondrial matrix due to the inner membrane impermeability to this ion. As a consequence, when the barrier provided by inner membrane was functional, a distinct punctate fluorescence signal from calcein clearly identifies MPT.
Cell viability assays

Cell viability was assessed with CCK-8 (cell counting kit-8, Kumamoto, Japan) after irradiation. CCK-8 uses highly water-soluble tetrazolium salt WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl) -5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt] to produce a water-soluble formazan dye upon reduction in the presence of an electron carrier. Being non-radioactive, CCK-8 allows sensitive determination of the number of viable cells in cell proliferation and cytotoxicity assays. WST-8 is reduced by dehydrogenases in cells to give a yellow colored product (formazan), which is soluble in the tissue culture medium. The amount of the formazan dye generated by the activity of dehydrogenases in cells is directly proportional to the number of living cells. The detection sensitivity of CCK-8 is higher than other tetrazolium salts such as MTT, XTT, MTS, or WST-1. At the indicated time, CCK-8 was added to cells and incubated for 1.5 h. ODexp. the 90th absorbance value, was read with a 96-well plate reader (DG5032, Hua Dong, Nanjing, China). The value is directly proportional to the number of viable cells in a culture medium (Griffioen and Molema, 2000).

Imaging analysis of living cells

In order to image single cells, the confocal laser scanning microscope system (LSM510-ConfoCor2) (Zeiss) was used. The system is equipped with a krypton–argon air-cooled laser (30 mW) and a He–Ne laser (5 mW) for excitation illumination. The illumination power was reduced from 3% to 0.3% of the maximum power of the excitation lasers to avoid fluorescence saturation and bleaching. All images were acquired before and after laser irradiation with a Plan–Neofluar 100×/NA1.45, oil-immersed objective lens. Cells were also maintained at 37 °C, 5% CO₂ during imaging with the mini-type culture chamber with CO₂ supply.

The specific imaging process is as follows. pGFP-cyt c, DCF, calcein, and rhodamine 123 were excited using the krypton–argon air-cooled laser. The excitation wavelength was 488 nm, the main dichroic beam splitter was UV/488/543/633 nm, and the emission detection filter was band pass 500–550 nm. pCFP-Bax was excited using the krypton–argon air-cooled laser. The excitation wavelength was 458 nm, the main dichroic beam splitter was 458 nm, and the emission detection filter was band pass 470–500 nm. TMRE was excited using the He–Ne laser. The excitation wavelength was 543 nm, the main dichroic beam splitter was UV/488/543/633 nm, and the emission detection filter was band pass 565–615 IR. pDsRed-mt was excited using the He–Ne laser. The excitation wavelength was 543 nm, the main dichroic beam splitter was UV/488/543/633 nm, and the emission detection filter was long pass 560 nm.

For intracellular measurements, the desired area was chosen in the confocal image. To quantify the results, the fluorescence emission intensities (including the background fluorescence) were obtained with Zeiss Rel 3.2 image processing software (Zeiss).

Statistics

MATLAB software was used for data analysis. For fluorescence emission intensity analysis, a background subtraction was performed for all the data. For the analysis of cytochrome c release, images were analyzed with MATLAB 6.5 software by drawing regions around individual cells and then computing standard deviations of the intensity of the pixels (punctate/diffuse) and integrated brightness (total brightness) (Muñoz-Pinedo et al., 2006).

Unless otherwise indicated, data were analyzed using one-way or two-way ANOVA. Comparisons of individual groups were performed using tuckey honest test. All results showed in our studies were repeated for at least five times in different cells in independent experiments.

Results

HF-LPLI-induced MPT

To determine the relationship between HF-LPLI-induced cell apoptosis and MPT, a technique based on calcein AM loading and Co²⁺ quenching was used. Non-irradiated cells under the same experimental procedures were used as control. Ca²⁺ overload was used as a positive experiment control. CaCl₂ was added and sequential images were acquired at various time points. As shown in Figure 1A, in control cells, calcein fluorescence remained constant (Fig. 1A, control), while cells treated with CaCl₂ had a significant fluorescence reduction (Fig. 1A, Ca²⁺ overload). Data showed that the calcein fluorescence emission intensities from mitochondria were decreased sharply 60 min post-irradiation (Fig. 1A, HF-LPLI), indicating a long-lasting MPT, which was blocked by CsA, a specific inhibitor of MPT, in our experiment (Fig. 1A, HF-LPLI + CsA).

To further confirm our presumption that HF-LPLI induces MPT, we used CCK-8 method to determine the protective role of CsA. ASTC-a-1 cells were exposed to CsA 2 h before irradiation. Non-irradiated cells under the same experimental procedures were used as control. Cell viabilities were assessed 6 and 10 h after irradiation. Cell death was significantly prevented when CsA was added (91.36% cell viability with CsA vs. 26.36% cell viability without CsA), as shown in Figure 1B. However, 10 h after HF-LPLI treatment in the presence of CsA, cell viability was reduced to only 30.66%, indicating that CsA only delayed, but not completely prevented, cell death.

ROS mediated cell death caused by HF-LPLI

To monitor ROS generation caused by HF-LPLI, the fluorescent products DCF were determined by confocal microscopy. ASTC-a-1 cells were labeled with H₂DCFDA for 30 min and imaged after irradiation. Non-irradiated cells under the same experimental procedures were used as control. An increased production of ROS in cells was observed after irradiation (Fig. 2A, HF-LPLI) and it reached a plateau at about 1 h 40 min (Fig. 2B, HF-LPLI) in comparison to the control cells (Fig. 2B, control). Moreover, the antioxidant DHA scavenged ROS induced by HF-LPLI treatment (Fig. 2A, B, HF-LPLI + DHA).

To determine whether ROS generation was a key step in HF-LPLI-induced cell apoptosis, we used CCK-8 method to determine the protective role of DHA on cell death under HF-LPLI treatment. ASTC-a-1 cells were exposed to DHA 30 min before irradiation. Cell viability was assessed 6 h post-irradiation. The data revealed that cell death was significantly prevented when DHA was added, as shown in Figure 2C (93.36% cell viability with DHA vs. 25.33% cell viability without DHA), and ROS generation mediated cell death.

DHA prevented MPT under HF-LPLI treatment

In order to study the relationship between irradiation induced “triggering” ROS generation and MPT, experiments were performed in the presence of DHA. MPT was monitored by calcein–Co²⁺ method. Non-irradiated cells under the same experimental procedures were used as control. In cells treated with DHA, calcein fluorescence decrease was prevented, suggesting the inhibition of MPT (Fig. 3). Based on the fact that DHA prevents MPT, it is reasonable to speculate that the ROS is crucial from the standpoint of MPT induction.
CsA delayed mitochondrial depolarization under HF-LPLI treatment

In order to monitor the effect of HF-LPLI on $\Delta \psi _{m}$, ASTC-a-1 cells loaded with rhodamine 123 for at least 20 min were treated by HF-LPLI and imaged by confocal microscopy.

Non-irradiated cells under the same experimental procedures were used as control. Under the normal conditions, mitochondria maintained $\Delta \psi _{m}$, as revealed by the accumulation of a potential-sensitive dye, rhodamine 123, determined from images during a 5 h recording period (Fig. 4A, control). In comparison, HF-LPLI caused a significant
reduction of rhodamine 123 signal (Fig. 4A, HF-LPLI); it fell below 50% of its initial level within 20 min (Fig. 4B, HF-LPLI).

To explore the relationship between HF-LPLI-induced MPT and mitochondrial depolarization, we examined the effects of CsA on ΔΨm. HF-LPLI treatment plus CsA exposure delayed the decrease of rhodamine 123 fluorescence emission intensity (reached 50% of its initial level in about 70 min) for about 50 min in comparison with HF-LPLI treatment alone (reached 50% of its initial level in about 20 min), as shown in Figure 4A,B. The data demonstrated that CsA delayed mitochondrial depolarization under HF-LPLI treatment.

CsA prevented cytochrome c release under HF-LPLI treatment

We assessed the subcellular location of cytochrome c in response to HF-LPLI treatment. ASTC-a-1 cells were transfected with pDsRed-mit for localizing mitochondria and pGFP-cyt c for monitoring the dynamics of cytochrome c. Non-irradiated cells under the same experimental procedures were used as control. Under the normal conditions, cytochrome c was relatively unchanged in the mitochondria (Fig. 5A, control). The data in Figure 5B were obtained using five cells in which cytochrome c was released from mitochondria into cytosol at about 50 min post-treatment. The cytochrome c was then translocated and assembled at the end-stage of apoptosis (Fig. 6B). The GFP-cyt c punctate/diffuse index at different times under the normal condition, HF-LPLI treatment or HF-LPLI treatment in the presence of CsA are shown in Figure 5B. These data indicated that HF-LPLI induced cytochrome c release and CsA prevented the process.

Activation of Bax caused by HF-LPLI treatment

To investigate the activity of Bax under HF-LPLI treatment, ASTC-a-1 cells transfected with pGFP-Bax for localizing Bax and then stained by TMRM for monitoring ΔΨm were treated with HF-LPLI and imaged by confocal microscopy. In control cells, GFP-Bax was largely cytosolic or loosely associated with mitochondria, which kept a constant ΔΨm, as shown in Figure 6A. Under HF-LPLI treatment, Bax translocated and assembled at the end-stage of apoptosis (Fig. 6B). The GFP-cyt c punctate/diffuse index began to increase 2 h 20 min post-irradiation (Fig. 6C, GFP-Bax).

To explore the relationship between Bax translocation and cytochrome c release under HF-LPLI treatment, ASTC-a-1 cells doubly transfected with pCFP-Bax and pGFP-cyt c were treated with HF-LPLI and imaged by confocal microscopy. Figure 6D shows the CFP-Bax and GFP-cyt c fluorescence emission intensities under the HF-LPLI treatment. After irradiation, GFP-cyt c punctate/diffuse index kept unchanged for 50 min and then decreased sharply. At about 1 h 40 min,
COLOR

Fig. 5. CsA prevented cytochrome c release under HF-LPLI treatment. Time sequence of cytochrome c subcellular location under HF-LPLI treatment. ASTC-a-1 cells were transfected with pDsRed-mit (red emission) for mitochondrial localization and pGFP-cyt c (green emission), and treated with HF-LPLI or HF-LPLI in the presence of CsA. Fluorescence images were acquired by confocal microscopy. Cells no treatment were control. Bar = 10 μm.

Discussion

In light of previous studies demonstrating HF-LPLI induced cell apoptosis via the mitochondria/caspase-3 signaling pathway (Wang et al., 2005; Wu et al., 2007), the working hypothesis of this study was that the induced apoptosis was resulted from MPT which was mediated by a high level of intracellular ROS generation.

In our experiments, two main lines of evidence led to the conclusion that HF-LPLI induced MPT in ASTC-a-1 cells. Firstly, calcein (~620 Da), a mitochondrial membrane impermeant fluorescent molecule, was permeable between mitochondria and cytosol under HF-LPLI treatment (Fig. 1A). Secondly, CsA, a specific inhibitor of MPT, prevented the permeabilization of calcein, and delayed cell death under HF-LPLI treatment (Fig. 1A,B). Therefore, these results demonstrated that HF-LPLI induced MPT, which acted in a CsA sensitive manner.

Mitochondrial functions such as protein import, ATP generation, and lipid biogenesis depend on the maintenance of ΔΨm; the loss of ΔΨm during apoptosis likely causes cell death through disabling these functions (Brenner and Kroemer, 2000). It appears that pre-apoptotic ΔΨm disruption is mediated by the MPT pores (Kroemer et al., 2006), that is, regulated mega-channels that allow the dissipation of inner transmembrane ion gradients. This was confirmed in cells treated with HF-LPLI, in which CsA had a significant inhibitive effect on mitochondrial depolarization (Fig. 4). In addition, HF-LPLI-induced mitochondrial depolarization may also be due to the direct photodamage on inner mitochondrial membrane. This was revealed by the fact that CsA only delayed mitochondrial depolarization but not completely blocking it (Fig. 4). Based on our experiments that CsA delayed the ΔΨm dissipation (Fig. 4B, HF-LPLI + CsA), we speculate that photodamage on inner mitochondrial membrane and subsequently triggered MPT co-affected ΔΨm dissipation. Specifically, after irradiation the possible photoacceptors in the inner mitochondrial membrane absorb light of certain wavelength (Karu, 1999; Krasnovsky et al., 2003; Karu et al., 2004, 2005), and then the primary ROS are generated. The ROS generation causes damages on inner membrane, which partly result in ΔΨm decrease. Otherwise, when the primary ROS causes the subsequently ROS generation, it may trigger the opening of the transition pores which lead to acute ΔΨm collapse. When cells were treated with CsA, the MPT pores were blocked (Fig. 1A). ΔΨm decrease was inhibited (Fig. 4), and in turn cytochrome c release was prevented (Fig. 5). These phenomena indicated that the decrease of ΔΨm caused by direct photodamage was unable to cause outer mitochondrial permeabilization. In addition, the function of the redox system in mitochondria could not be ruled out, which could scavenge some ROS induced by HF-LPLI treatment (Balaban et al., 2005).

HF-LPLI triggered a high-level intracellular ROS generation and this was monitored in our early studies (Wu et al., 2007). As shown in Figure 2A, immediately after irradiation, mitochondria had a higher level of ROS production than that of cytosol; as the time increased, all cellular space showed high level ROS. These results indicated that mitochondria were the major ROS...
generation site and the first damage site in cells immediately after irradiation. This speculation was confirmed by the result that HF-LPLI could induce MPT in a short time (less than 1 h) post-irradiation (Fig. 1A). This phenomenon was similar to that under photodynamic therapy (PDT) treatment. The intracellular localization of the sensitizer in PDT coincides with the primary site of photodamage, mainly because of the limited diffusion of the short-lived singlet oxygen (half-life: <0.04 μs, radius of action: <0.02 μm), which is thought to be the predominant oxidant in PDT (Dougherty et al., 1998;
found that Bax was still activated (Fig. 6F), demonstrating that Bax signaling pathway was indeed independent of MPT under HF-LPLI treatment. Previous research has indicated that intracellular oxidative stress can trigger the activation of glycogen synthase kinase (GSK3) (Shin et al., 2004; King and Jope, 2005; Beurel and Jope, 2006). In addition, Lineman et al. (2004) reported that GSK3 β phosphorylated Bax and promoted its mitochondrial localization during neuronal apoptosis. Therefore, we concluded that Bax activation was via the LPLI/ROS/GSK3 β/Bax signaling pathway.

Comparing the data shown in Figures 5A and 6F, we found that in the presence of CsA, cytochrome c release was inhibited even 7 h post-irradiation, but Bax was activated at about 6 h, indicating that Bax activation was independent of cytochrome c release and that Bax translocation failed to induce cytochrome c release. This is an interesting phenomenon, because it was established that Bax translocation to mitochondria could induce mitochondrial membrane permeabilization, and subsequently release of proapoptotic proteins, such as cytochrome c (Adams and Cory, 2007). Why would Bax translocation fail to induce cytochrome c release under these conditions? One possible explanation was that Bax activation was involved in ER stress, finally induced cell apoptosis. The mechanism by which apoptosis is induced in response to ER stress has been examined in multiple cell types. Bax and Bak are important in this pathway, as mouse embryonic fibroblasts (MEFs) doubly deficient in Bax and Bak are resistant to ER stress-induced apoptosis (Scorrano et al., 2003; Zong et al., 2003). In addition to the established roles of Bax and Bak in the mitochondria, both are also found to be localized on the ER membrane and both play an important role in Ca2þ regulation and release in response to ER stress (Nutt et al., 2002; Scorrano et al., 2003; Zong et al., 2003). The discovery of an ER-localized caspase, caspase-12, has brought into question the mechanism by which ER stress activates caspases to induce apoptosis (Nakagawa et al., 2000). In vitro, activated caspase-12 is able to cleave caspase-9 directly, which subsequently activates caspase-3, potentially eliminating the requirement of the mitochondria and apoptosome to carry out ER stress-induced apoptosis (Rao et al., 2002). The lack of apoptosome involvement in ER stress-induced apoptosis is consistent with the observation that Sak2 cells, which are deficient in Apaf-1, are capable of activating caspases when treated with ER stress-inducing agents thapsigargin (TG) and brefeldin A (Rao et al., 2002). Likewise, C2C12 cells treated with tunicamycin (TU) or TG show caspase activation without any detectable release of cytochrome c (Morishima et al., 2002).

Recent studies suggested that the mitochondrial signaling pathway was significant in either inducing or amplifying ER stress-induced apoptosis. First, in contrast to the data from C2C12 cells, cytochrome c was released in response to ER stress in a variety of other cell types (Reimertz et al., 2003; Di Sano et al., 2006). Second, a recent study found that the Apaf-1-deficient ETNA (murine embryonic telencephalic naive) cell line and Apaf-1-deficient MEFs and embryonic cortical cells were resistant to ER stress-induced apoptosis (Di Sano et al., 2006). This may be revealed by our results that HF-LPLI-induced Bax translocation was faster than under the conditions when MPT was blocked (Fig. 6B,F).

Finally, for the first time we provided the evidence that a long-lasting, CsA-sensitive MPT occurred in the early phase of apoptotic cell death induced by HF-LPLI, and induced mitochondrial ROS generation played key roles in the MPT induction. We also showed another signaling pathway, which was mediated by Bax translocation, occurred at the last stage of cell apoptotic process. Results shown in Figure 7 demonstrated that MPT signaling pathway was dominant and Bax signaling pathway was secondary; however, both pathways were controlled by the intracellular ROS generation.

Fig. 7. The effect of DHA, CsA, and Bax siRNA on cell viability under HF-LPLI treatment. CCK-8 assayed the viability of ASTC-a-1 cells treated with HF-LPLI, HF-LPLI in the presence of CsA, HF-LPLI in the presence of CsA, and HF-LPLI in the presence of Bax siRNA. Cells with no treatment were control. Cell viability was assessed 6 and 10 h after irradiation. The data represent mean ± SEM of five independent experiments.
Acknowledgments

pGFP-Bax was a gift from Prof. Richard J. Youle (Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892). pDsRed-mit was presented by Prof. Yuikko Gotoh (the Institute of Molecular and Cellular Bioscience, University of Tokyo). pCFP-Bax was presented by Prof. Charles and Andrew (The School of Biological Science, University of Manchester). We also thank Dr. G.J. Gores (Center for Basic Research in Digestive Diseases, Molecular Medicine Program, Mayo Clinic, Rochester Minnesota) for kindly providing the pGFP-cyt c.

Literature Cited

Q5: Author: Please provide the city name.
Q6: Author: Please provide complete location.
Q7: Author: Please check the change made.
Q8: Author: Linseman et al., 2006 has been changed to Linseman et al., 2004 to match with the reference list. Please check.
Q9: Author: Please check the symbol used.
Q10: Author: Please cite this reference in the text.
COLOR REPRODUCTION IN YOUR ARTICLE

These proofs have been typeset using figure files transmitted to production when this article was accepted for publication. Please review all figures and note your approval with your submitted proof corrections. You may contact the journal production team at JCPprod@wiley.com if you wish to discuss specific concerns.

Because of the high cost of color printing, we can only print figures in color if authors cover the expense. If you have submitted color figures, please indicate your consent to cover the cost on the table listed below by marking the box corresponding to the approved cost on the table. The rate for this journal is $500 USD per printed page of color, regardless on the number of figures appearing on that page.

Please note, all color images will be reproduced online in Wiley InterScience at no charge, whether or not you opt for color printing.

You will be invoiced for color charges once the article has been published in print.

Failure to return this form with your article proofs may delay the publication of your article.

JOURNAL OF CELLULAR PHYSIOLOGY

MANUSCRIPT TITLE High Fluence Low-Power Laser Irradiation Induces Mitochondrial Permeability Transition Mediated by Reactive Oxygen Species

AUTHOR(S) Shengnan Wu, Da Xing, Xuejuan Gao, and Wei, R. Chen

<table>
<thead>
<tr>
<th>No. Color Pages</th>
<th>Color Charge</th>
<th>No. Color Pages</th>
<th>Color Charge</th>
<th>No. Color Pages</th>
<th>Color Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$500</td>
<td>5</td>
<td>$2500</td>
<td>9</td>
<td>$4500</td>
</tr>
<tr>
<td>2</td>
<td>$1000</td>
<td>6</td>
<td>$3000</td>
<td>10</td>
<td>$5000</td>
</tr>
<tr>
<td>3</td>
<td>$1500</td>
<td>7</td>
<td>$3500</td>
<td>11</td>
<td>$5500</td>
</tr>
<tr>
<td>4</td>
<td>$2000</td>
<td>8</td>
<td>$4000</td>
<td>12</td>
<td>$6000</td>
</tr>
</tbody>
</table>

Contact JCPprod@wiley.com for a quote if you have more than 12 pages of color

☐ Please print my figures color ☐ Please print my figures in black and white

☐ Please print the following figures in color

and convert these figures to black and white

Approved by

Billing Address

E-mail

Telephone

Fax
Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing will be substantially more expensive.

REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (201) 748-6353 FOR A PRICE QUOTE.

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$336</td>
<td>$501</td>
<td>$694</td>
<td>$890</td>
<td>$1052</td>
</tr>
<tr>
<td>5-8</td>
<td>$469</td>
<td>$703</td>
<td>$987</td>
<td>$1251</td>
<td>$1477</td>
</tr>
<tr>
<td>9-12</td>
<td>$594</td>
<td>$923</td>
<td>$1234</td>
<td>$1565</td>
<td>$1850</td>
</tr>
<tr>
<td>13-16</td>
<td>$714</td>
<td>$1156</td>
<td>$1527</td>
<td>$1901</td>
<td>$2273</td>
</tr>
<tr>
<td>17-20</td>
<td>$794</td>
<td>$1340</td>
<td>$1775</td>
<td>$2212</td>
<td>$2648</td>
</tr>
<tr>
<td>21-24</td>
<td>$911</td>
<td>$1529</td>
<td>$2031</td>
<td>$2536</td>
<td>$3037</td>
</tr>
<tr>
<td>25-28</td>
<td>$1004</td>
<td>$1707</td>
<td>$2267</td>
<td>$2828</td>
<td>$3388</td>
</tr>
<tr>
<td>29-32</td>
<td>$1108</td>
<td>$1894</td>
<td>$2515</td>
<td>$3135</td>
<td>$3755</td>
</tr>
<tr>
<td>33-36</td>
<td>$1219</td>
<td>$2092</td>
<td>$2773</td>
<td>$3456</td>
<td>$4143</td>
</tr>
<tr>
<td>37-40</td>
<td>$1329</td>
<td>$2290</td>
<td>$3033</td>
<td>$3776</td>
<td>$4528</td>
</tr>
</tbody>
</table>

Please send me _____________________ reprints of the above article at $ ________________

Please add appropriate State and Local Tax (Tax Exempt No.____________________) $ ________________

for United States orders only.

Please add 5% Postage and Handling $ ________________

TOTAL AMOUNT OF ORDER $ ________________

International orders must be paid in currency and drawn on a U.S. bank

Please check one: □ Check enclosed □ Bill me □ Credit Card

If credit card order, charge to: □ American Express □ Visa □ MasterCard

Credit Card No ______________________ Signature ______________________ Exp. Date ____________

BILL TO:

Name _______________________________

Institution __________________________

Address ______________________________

Purchase Order No. ___________________

SHIP TO: (Please, no P.O. Box numbers)

Name _______________________________

Institution __________________________

Address ______________________________

Phone __________________ Fax __________

E-mail _____________________________
COPYRIGHT TRANSFER AGREEMENT

Date: 2008/10/29

To: JOURNAL OF CELLULAR PHYSIOLOGY

Re: Manuscript entitled _High Fluence Low-Power Laser Irradiation Induces Mitochondrial Permeability Transition Mediated by Reactive Oxygen Species_ (the "Contribution") for publication in JOURNAL OF CELLULAR PHYSIOLOGY (the "Journal") published by Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc. ("Wiley").

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor’s institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserv or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] © copyright (year) (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal], and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.

[Signature]

Production/Contribution ID#______________
Publisher/Editorial office use only
2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor's institution free of charge or to be stored in electronic format in data rooms for access by students at the Contributor's institution as part of their course work (sometimes called "electronic reserve rooms") and for in-house training programs at the Contributor's employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[____] Contributor-owned work
Contributor's signature
Date
Da Xing
Type or print name and title

Co-contributor's signature
Date
Type or print name and title

ATTACH ADDITIONAL SIGNATURE PAGE AS NECESSARY

[____] Company/Institution-owned work
Company/Institution-owned work (made-for-hire in the course of employment)
Company or Institution (Employer-for-Hire)
Date
Authorized signature of Employer
Date

[____] U.S. Government work

Note to U.S. Government Employees

A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[____] U.K. Government work (Crown Copyright)

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.