Int. J. Cancer: 125, 2757-2766 (2009)
© 2009 UICC

p-Calpain regulates caspase-dependent and apoptosis inducing factor-mediated
caspase-independent apoptotic pathways in cisplatin-induced apoptosis
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Cisplatin, an effective anticancer agent, can induce tumor cell ap-
optosis via caspase-dependent and-independent pathways. How-
ever, the precise mechanism that regulates the pathways remains
unclear. In this study, we showed that p-calpain mediated both
caspase-dependent and-independent pathways during cisplatin-
induced apoptosis in human lung adenocarcinoma cells. After cis-
platin treatment, calpain activation, as measured by a fluorescent
substrate, was an early event, taking place well before apoptosis
inducing factor (AIF) release and caspase-9/-3 activation. Confo-
cal imaging of cells transfected with AIF-GFP demonstrated that
AIF release occurred about 9 hr after cisplatin treatment. The
increase of p-calpain activity proved to be a crucial event in the
apoptotic machinery, as demonstrated by the significant protec-
tion of cell death in samples suppressed the endogenous p-calpain
expression level, as well as cotreated with the calpain inhibitors,
calpeptin and PD150606. Inhibition of p-calpain not only signifi-
cantly reduced caspase-9/-3 activities but also completely blocked
AIF redistribution. Our study also showed that endogenous mito-
chondrial p-calpain could directly induce the truncation and
release of AIF, while caspases and cathepsins were not necessary
for this process. In conclusion, the study demonstrated that activa-
tion of p-calpain played an essential role in regulating both cas-
pase-dependent and AIF-mediated caspase-independent apoptotic
pathways in cisplatin-induced apoptosis.
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Cisplatin [cis-diammine dichloroplatinum; cis-Platinum(II)] is
an important chemotherapeutlc drug for the treatment of various
mahgnan(:les 2 Cisplatin treatment causes DNA damage resulting
in apoptosis and cell death.' % The most Wldely studied mediator
of cisplatin-induced apoptosis in cells is caspase cascade of
enzymes. Many studies have reported that caspase-8, —9, —7 and
—3 are involved in Tesponse to cisplatin treatment in various ex-
perimental settings.'™ Although caspases are important regulators
of apoptosis, there is accumulating evidence indicating the exis-
tence of caspase- -independent mechanisms in cisplatin-induced
cell apoptosis.”” It has been reported that AIF may regulate a
complementary, cooperatlve or redundant pathway, along with
caspase cascades in cisplatin-induced apoptosm ? Despite these
discoveries, however, a key question remains to be addressed:
How does the caspase-dependent and-independent signaling path-
ways are regulated in cisplatin-induced apoptosis.

AIF is a 62-kDa mitochondrial redoxactive enzyme capable of
0x1d121ng NAD(P)H in vitro and exhibiting proapoptotlc proper-
ties.'”!! Many studies demonstrated that AIF is anchored to the
outer face of the mitochondrial inner membrane in healthy
cells."'="3 Upon apoptosis induction, processing of 62-kDa AIF to
a 57-kDa form occurred caspase-independently in the intermem-
brane space. Then the processed form is released to the cytosol,
and it translocates to the nucleus where it medlates chromatm con-
densation and large-scale DNA fragmentatlon > This apopto-
genic function of AIF is essential in some relevant experlmental
models of cell death.'®* The AIF release from mitochondria is
likely to involve 2 steps, namely, detachment from the inner mem-
brane (IM) and translocation into the cytosol after mitochondrial
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outer membrane permeabilization (MOMP).'"** During the whole
process, AIF needs to be cleaved into 57 kDa tAIF by calpains or
cathepsins.''"?*2  Other intracellular signaling events also
have been mechanistically linked to AIF release. These include
poly(ADP-ribose) polymerase-1 (PARP-1) activation,>*"#3—3°
activation of p53 and Bax, 1736 mitochondrial translocation of
Bid.*’? Despite these discoveries, however, the precise mecha-
nism responsible for AIF release in cisplatin-induced apoptosis
remains elusive. Several key questions remain to be addressed:
Which specific factor is responsible for mitochondrial AIF
release? Are calpains, caspases and/or cathepsins implicated in
such release?

Calpains are a family of calcium-dependent cysteine proteases
found in all eukaryotes. There are 2 ubiquitous isoforms, - calpain
(calpain-I) and m-calpain (calpain-II), that are activated by micro-
molar and millimolar concentrations of Ca*>* in vitro, respec-
tlvely 401t has been implicated that calpams perform an important
role in various cellular processes in mammals, such as signal
transduction, cell proliferation and differentiation, apopt051s and
necrosis.***! The potential role of calpains in apoptosis is indi-
cated by a growing list of calpains substrates, including p53,
PARP, Bax, Bid, AIF and several -cytoskeletal pro-
teins.’ 2425 27 28.30.3140-45 Though the contribution of calpains to
apoptosis is generally accepted, further studies are still needed to
precisely elucidate the role of calpains in apoptosis.

Cisplatin has been introduced into clinical trials for almost
30 years. Studies still continue in an effort to understand exactly
how cisplatin works. Understanding the molecular basis of cispla-
tin-mediated apoptosis could lead to strategies resulting in
improved therapeutic benefits. Recently, we attempted to charac-
terize some biochemical mechanisms of the cisplatin-induced apo-
ptosis, and we showed that calpain -mediated pathway dominated
msplatm induced apoptosis in human lung adenocarcinoma
cells.** There is accumulating evidence indicating that calpain

Additional Supporting Information may be found in the online version
of this article.
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regulates both caspase-dependent and-independent pathways in
apoptosis induced by different apoptotic stimuli in various cell
system.**#14446 However, how calpain plays its role in cisplatin-
induced apoptotic cell death so far is unclear. The aim of the pres-
ent study was to further investigate the cisplatin-induced apoptotic
machinery. To determine the molecular involvement of calpain,
this study focuses on (i) the contribution of p-calpain and m-cal-
pain in the experimental system, (i7) the crosstalk between cal-
pains and caspases, 2 cytosolic proteolytic systems, and (iii) the
role of calpain in regulating both caspase-dependent and-inde-
pendent apoptotic pathways.

Material and methods
Cell culture, transfection and treatment

The human lung adenocarcinoma cell lines ASTC-a-1 and
A549 were obtained from the Department of Medicine, Jinan Uni-
versity (Guangzhou, China) and cultured in DMEM (GIBCO,
Grand Island, NY) supplemented with 15% fetal calf serum
(FCS), penicillin (100 units/ml) and streptomycin (100 mg/ml) in
5% CO, at 37°C in a humidified incubator. The plasmid AIF-GFP
was kindly provided by Dr. Douglas R. Green (Department of
Immunology, St Jude Children’s Research Hospital, Memphis,
TN),*” and the plasmid DsRed-Mit was kindly provided by Dr. Y.
Gotoh (University of Tokyo, Yayoi, Tokyo, Japan).*® Transfec-
tions were performed with Lipofectamine reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s protocol.

The concentration of cisplatin (Sigma-Aldrich, St Louis, MO)
used in our experiments was 40 LM. In the experiments using cal-
peptin (10 pM) (Alexis Biochemicals, Coger, Paris, France),
PD150606 (20 uM) (Alexis Biochemicals, Coger, Paris, France),
Z-LEHD-fmk (25 puM), Z-DEVD-fmk (25 pM) (BioVision,
Mountain View, CA) or Z-VAD-fmk (25 pM) (Sigma-Aldrich, St
Louis, MO), all the drugs were added to the cells 30 min before
cisplatin.

Time-lapse confocal fluorescence microscopy

GFP and DsRed emissions were monitored confocally using a
laser scanning microscope (LSM 510/ConfoCor 2) combination
system (Zeiss, Jena, Germany). GFP was excited at 488 nm with
an argon ion laser and its fluorescence emission was recorded
through a 500-530 nm IR band-pass filter. DsRed was excited at
543 nm with a helium-neon laser and its emitted light was
recorded through a 560-nm long-pass filter.

For detection of AIF release, the samples were cotransfected
with DsRed-Mit and AIF-GFP, and imaged by confocal micro-
scope. The images of AIF-GFP and DsRed-Mit were obtained
separately and then merged. The AIF-GFP released from mito-
chondria was determined based on the overlap of AIF-GFP and
DsRed-Mit fluorescence images.

Calpain, caspase-3 and caspase-9 activity assays

The activities of calpain, caspase-9 and caspase-3 were
measured using the following fluorogenic enzyme substrates: Ac-
LLY-AFC (BioVision, Mountain View, CA), LEHD-AFC and
DEVD-AFC (Alexis Biochemicals, Coger, Paris, France), respec-
tively. After the desired duration of different treatments, the cells
were harvested at 1,200g and lysed with extraction buffer pro-
vided by the manufacturer. Cell lysates were centrifuged at
10,000g at 4°C for 10 min, and the supernatants were collected.
After incubation at 37°C for 1 hr, the samples were read in a fluo-
rometer equipped with a 400-nm excitation filter and a 505-nm
emission filter. The enzyme activity was expressed as relative
fluorescence units per milligram of protein. The arbitrary values
were presented as the mean = SD of 3 experiments.
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Cell viability assays

Cells were cultured in a 96-well microplate at a density of 5 X
10° cells/well. The cells were treated with different agents, and
their viability was assessed with CCK-8 (Cell Counting Kit)
(Dojindo Laboratories, Kumamoto, Japan) according to the manu-
facturer’s instructions. ODyso, the absorbance value at 450 nm,
was read with a 96-well plate reader (DG5032, Huadong, Nanjing,
China) to determine the viability and proliferation of the cells.

Flow cytometry

We used annexin V-fluorescein isothiocyanate (FITC; 0.1 pg/ml)
for the assessment of phosphatidylserine (PS) exposure, propidium
iodide (PI; 0.5 pg/ml) for cell viability analysis. Cell death was
measured in a FACSCanto ™ 11 cytofluorimeter (Becton Dickinson,
Mountain View, CA).

Subcellular fractionation

Nuclear, cytosolic and mitochondria-enriched fractions were
prepared using the Subcellular Proteome Extraction Kit (Pro-
teoExtract™, Calbiochem, Darmstadt, Germany) according to the
manufacturer’s instructions.

Preparation of mitochondria

Adult mouse liver mitochondria were isolated according to pre-
viously described method.”>*° In brief, liver tissues were homoge-
nized in mitochondria isolation buffer (MIB) containing 225 mM
mannitol, 75 mM sucrose, 5 mM HEPES, pH 7.4, 1 mM EGTA
and 1 mg/ml bovine serum albumin, and centrifuged at 1,200g for
10 min. The mitochondria were collected by centrifugation at
12,000g for 10 min, resuspended in 10 ml of MIB containing
0.02% digitonin and centrifuged at 12,000g for 10 min. The mito-
chondrial pellets were then resuspended in MIB and further puri-
fied by a sucrose step gradient consisting of 2 ml each of 1.2 and
1.6 M sucrose by centrifugation at 40,000g for 1 hr at 4°C. The
brownish-colored mitochondria-containing band, which was
located at the interface of 1.2 and 1.6 M sucrose, was recovered,
washed once with MIB and resuspended in MIB without BSA and
EGTA.

To generate mitochondrial subfractions, a protocol was used as
described previously.? In brief, the obtained mitochondrial frac-
tion was resuspended in 2 volumes of 20 mM potassium phosphate
buffer containing 0.2 mg/ml bovine serum albumin at pH 7.4 and
allowed to stand at 4°C for 1 hr. The resuspended sample was cen-
trifuged at 3,000g for 10 min. The supernatant was centrifuged at
105,000¢ for 30 min, and the pellet was used as the OM fraction
and the supernatant was used as the IMS fraction. The remaining
pellet was sonicated (15 sec X 4) and centrifuged at 77,000g for
60 min, and this pellet was used as the IM fraction and the super-
natant was used as the matrix fraction. All of the procedures were
carried out at 4°C. After protein concentration determinations, the
purity of these fractions was analyzed by immunoblot with anti-
bodies against mitochondrial outer membrane [voltage-dependent
anion channel (VDAC)], inner membrane (COX IV) and inter-
membrane space [adenylate kinase 2 (AK2)] markers. High puri-
ties of the mitochondrial compartments were observed (data not
shown).

Western blotting analysis

Western blotting was performed as described previously.**
Briefly, 20-50 pg of proteins were loaded on SDS/PAGE, trans-
ferred to nitro-cellulose membranes and blotted with primary anti-
bodies reactive to the detected proteins (anti-AIF, 1:500; anti-p-
calpain, 1:500; anti-m-calpain, 1:500; anti-cyto ¢, 1:500; antiactin,
1:1,000; anti-Cox IV, 1:1,000; antihistone, 1:1,000), followed by
secondary antibodies, goat antirabbit conjugated to IRDye™800
(Rockland Immunochemicals, Gilbertsville, PA) or goat anti-
mouse conjugated to Alexa Fluor 680 (Invitrogen, Carlsbad, CA).
Detection was performed using the LI-COR Odyssey Scanning
Infrared Fluorescence Imaging System (LI-COR, Lincoln, NE).
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FiGcure 1 — Cisplatin induces caspases activation. (a) Effects of cisplatin on cell viability. Viability of ASTC-a-1 cells, after different treat-
ments as indicated, was assessed by the CCK-8 assays at different time points. Data represent the mean * SD of 4 independent experiments, *p
< 0.05 versus cisplain-only treatment. (b) After the indicated time post-cisplatin treatment, the cells were stained with annexin V-FITC and PI;
the percentages refer to the levels of positive staining. (¢) After different treatments, the percentage of apoptotic cells was assessed by flow
cytometry at indicated time points. Data represent the mean = SD of 4 independent experiments, *p < 0.05 versus cisplain-only treatment. (d)
An increase in caspase-9 activities induced by cisplatin. After different treatments as indicated, the activity of caspase-9 was assayed by using
its substrate LEHD-AFC (relative fluorescence units/mg of protein and expressed as arbitrary units). Data represent the mean * SD of 4 inde-
pendent experiments, *p < 0.05 versus cisplain + Z-LEHD-fmk treatment. (e) After different treatments as indicated, the induction of caspase-
3 activity was measured by cleavage of the substrate DEVD-AFC (relative fluorescence units/mg of protein and expressed as arbitrary units).
Data represent the mean = SD of 4 independent experiments, *p < 0.05 versus cisplain + Z-DEVD-fmk treatment.

RNA interference

The suppression of AIF, p-calpain and m-calpain was accom-
plished using siRNA sequences. The sequences of the siRNAs
specific for human large subunits of m-calpain and p-calpain were
5'-CCAGGACUACGAGGCGCUGATAT-3" and 5-GCUAGU-
GUUCGUGCACUCUATAT-3/, respectively. The sequence of the

siRNA specific for human AIF was 5-CCGGUCCCAGGCAA-
CUUGATdT-3’. A scrambled siRNA (5-CCUAGACCGAAC-
GAACUGGATAT-3') was used as a negative control. The siRNA
sequences were transfected into cells using Lipofectamine reagent
(Invitrogen, Carlsbad, CA), according to the manufacturer’s
instructions. In the experiments using siRNAs, the cells were
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treated by specific siRNA for 48 hr firstly, and then the treated
cells were used to perform different experiments as desired.

Image processing and statistical analysis

To quantity cells showing cytosolic AIF-GFP, the cells cotrans-
fected with AIF-GFP and DsRed-Mit were treated with different
agents. At selected time points, the percentage of cells showing
AIF-GFP released from mitochondria was assessed by counting
the number of cells exhibiting cytosolic AIF-GFP. Data were col-
lected from n = 150-200 cells per treatment in 10—15 randomly
selected image frames from different experiments.

Data are represented as the mean * standard deviation (SD).
Statistical analysis was performed with Student’s paired r-test.
Differences were considered statistically significant at p < 0.05.

Results
Cisplatin induces caspase activation in ASTC-a-1 cells

Treatment of ASTC-a-1 cells with cisplatin (40 uM) for 24 hr
significantly decreased cell viability compared to untreated cells
(Fig. 1la). Correspondingly, the number of apoptotic cells
increased with time following treatment with cisplatin compared
to control (Fig. 1b). Treatment of ASTC-a-1 cells with cisplatin
also significantly increased caspase-9 and —3 activities (Figs. 1d
and le). Pretreatment with Z-LEHD-fmk (inhibitor of caspase-9)
and Z-DEVD-fmk (inhibitor of caspase-3) increased cell viability
(Fig. la) and decreased apoptosis (Fig. 1¢). These observations
implied that caspase-mediated apoptotic pathway was activated
following cisplatin treatment in ASTC-a-1 cells.

Because cisplatin treatment increased apoptosis and caspases
activities in ASTC-a-1 cells, we explored the effect of Z-VAD-
fmk, a pan-caspase inhibitor, on cisplatin-induced effects on cell
viability and apoptosis in cells. Compared with cisplatin-only
treatment, pretreatment with Z-VAD-fmk increased cell viability
(Fig. la) and decreased apoptosis (Fig. 1¢). However, even though
Z-VAD-fmk obviously reduced cisplatin-induced apoptosis, it
failed to completely prevent cell death, suggesting that a caspase-
independent mechanism was involved in this experimental model.

Protective effect of AIF knockdown against cisplatin-induced
cell death

Previous studies demonstrated that AIF mediated caspase-inde-
pendent apoptotic pathway. To identify whether AIF played a role
in our experimental model, we detected cell viability and cell
death after knocking down AIF using RNA interference approach.
The data demonstrated that the designed sequence was highly
effective in knocking down AIF (see Supporting Information Figs.
la and 1b). Silencing AIF obviously increased cell viability (Fig.
2a) and decreased apoptosis (Fig. 2b). Interestingly, compared to
the results by the treatment of Z-VAD-fmk or siRNA-AIF alone,
cotreatment with Z-VAD-fmk and siRNA-AIF had significant
effects on cell viability and cell death (Figs. 2a and 2b). These
results implied that AIF complemented caspase-mediated apopto-
sis in cisplatin-treated ASTC-a-1 cells.

Cisplatin treatment induces nuclear translocation of
mitochondrial AIF

To observe the dynamic behavior of AIF during cisplatin-
induced apoptosis, the fusion protein AIF-GFP was utilized to
follow AIF migration and DsRed-Mit was utilized to label the
mitochondria.

As shown in typical images, before AIF release, the distribution
patterns of both AIF and DsRed-Mit were the same as those of
mitochondria, appearing as filamentous structures as shown in the
control cell (Fig. 3a). However, about 9 hr post-treatment with
cisplatin, AIF released from mitochondria and then translocated to
nuclei (Figs. 3b and 3c). These results were also confirmed by
western blotting analysis (Figs. 3d and 3e).
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FI1GURE 2 — Protective effect of AIF knockdown against cisplatin-
induced cell death. In the experiments using siRNA-AIF, the cells
were treated by siRNA-AIF for 48 hr firstly, and then the treated cells
were used to perform different experiments as desired. () The viabil-
ity of cells after different treatments as indicated was assessed by the
CCK-8 assays at different time points. Data represent the mean *
SEM of 4 independent experiments, *p < 0.05 versus cisplain-only
treatment; “p < 0.05 versus cisplatin + siRNA-AIF treatment; p <
0.05 versus cisplatin + Z-VAD-fmk treatment. (b) After different
treatments, the percentage of apoptotic cells was assessed by flow
cytometry at indicated time points. Data represent the mean * SD of
4 independent experiments, *p < 0.05 versus cisplain-only treatment;
#p < 0.05 versus cisplatin + siRNA-AIF treatment; 'p < 0.05 versus
cisplatin + Z-VAD-fmk treatment.

Mitochondrial u-calpain induces truncation and release
of AIF in cisplatin-induced apoptosis

Our previous studies showed that calpain played an important
role in cisplatin-induced apoptosis.** We further identify the role
of p-calpain and m-calpain using siRNA. Therefore, siRNA
sequences specifically targeting p-calpain and m-calpain were
constructed, respectively, together with the scramble-sequence
control. As the results shown (see Supporting Information Fig. 2),
transfection of siRNA sequences specifically suppressed the
expression of m-calpain and p-calpain, respectively, whereas the
negative control had no effect. Then we determined the role of m-
calpain and p-calpain in cisplatin-induced calpain activation. As
shown in Figure 4a, calpain activation occurred early following
cisplatin treatment and was prevented by inhibitors, calpeptin and



REGULATION OF CISPLATIN-INDUCED APOPTOSIS BY ;-CALPAIN 2761

a C 80-
AIF-GFP  DsRed-Mit Overlay A =l ¥

o ] 9 12
Time (h)
d
Time(h) 0 1 & 9 12 24

| —— ——— |— AIF
I — -|—rnvc n

%

&

AIF-GFP release (% cells)
2

2 8

(=]

b Mito |
AIF-GFP  DsRed-Mit  Overlay

' il i — — — |— AlF
. Nucl
— ——— et e | — His 0N
e
1.04 ——
. . *
= 0.8+ =
7
E
2 064 %
8 kil
8 h 47 min = 044 %
=]
i i £2
< 0.2 *
0.0
Time (h) o 1 6 9 12 24
¢ T
-
(] i
Ba %
[X]
=
T
w ®
< 8
10 1
12] s
*

FIGURE 3 — Spatial and temporal changes in AIF subcellular localization during cisplatin-induced apoptosis. (@) Control cells without AIF
translocation over time. (b) Time-lapse images of AIF-GFP redistribution after cisplatin treatment. The arrows in the images show the nuclear
translocation of AIF. Similar results were obtained from 3 independent experiments. Bar, 5 um. (c¢) Quantification of cells showing AIF translo-
cation. At indicated time points, the percentage of cells showing AIF translocation to nucleus was assessed by counting the number of cells
exhibiting nuclear AIF. Data represent the mean = SD of 3 independent experiments, *p < 0.05 versus control group. (d) Time course of AIF
relocation from the mitochondrial fraction (Mito) to nuclear fraction (Nucl) in cells treated with cisplatin. CoxIV is a marker for mitochondria,
Histone for nuclear proteins. Similar results were obtained from 3 independent experiments. (¢) Quantitative data of (d); densitometric results of
3 separate blots were used for quantitative analysis. For densitometry, values were normalized according to the control sample lanes that were
arbitrarily set as 1; data represent the mean * SD, *p < 0.05 versus control sample. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

PD150606; suppression of p-calpain blocked calpain activities, Then we hypothesize that pi-calpain may mediate the truncation
while siRNA targeting m-calpain had no major effect on calpain  and release of AIF from mitochondria following cisplatin treat-
activation, suggesting that only p-calpain was activated in our ex- ment. We tested this hypothesis using western blotting technique.
perimental model. Suppression of p-calpain (Figs. 4b and 5), as well as pretreatment
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with calpeptin or PD150606 (Figs. 7a, 7c¢ and 7d), blocked the
truncation and translocation of AIF, while downregulation of m-
calpain had no such effect. Further study demonstrated that p-cal-
pain, but not m-calpain, localizes in mitochondria (Fig. 4c). Then
we hypothesize that mitochondrial p-calpain could cleave AIF
directly. The results demonstrated that the truncation of AIF in
cisplatin-treated cells occurred at about 4 hr and increased pro-
gressively (Fig. 4d), while AIF and cytochrome c release (Figs. 4d
and 4e) from mitochondria started at 8 hr post-treatment, indicat-
ing that AIF was subject to truncation by p-calpain before
MOMP. These observations implied that original mitochondrial p-

calpain caused truncation and release of AIF in cisplatin-induced
apoptosis.

To further confirm that the activated mitochondrial p-calpain
could cause the proteolytic processing of intact AIF, we further
investigated the effect of p-calpain on AIF truncation in isolated
mitochondria. In IMS, the amount of 57-kDa truncated AIF (tAIF)
increased in time-dependent manner (see Supporting Information
Fig. 3a), while calpeptin could block the cleavage of AIF and
release into IMS. The mixture of inner membrane (IM) and IMS
incubated with Ca>" for 90 min (see Supporting Information Fig.
3b). Sixty-two-kiloDalton intact AIF in IM and 57-kDa truncated
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F1Gure 6 — Knockdown of p-calpain reduces cisplatin-induced caspases activation. (¢) Downregulation of pi-calpain reduces caspase-9 activ-
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as arbitrary units). Data represent the mean = SD of 4 independent experiments, *p < 0.05 versus cisplain-only treatment. () Downregulation
of p-calpain reduces caspase-3 activities. After different treatments as indicated for 16 hr, the induction of caspase-3 activity was measured (rel-
ative fluorescence units/mg of protein and expressed as arbitrary units). Data represent the mean * SD of 3 independent experiments, *p < 0.05
versus cisplain-only treatment. (¢, d) Knockdown of pi-calpain reduces cisplatin-induced cell death. (¢) The viability of cells after different treat-
ments as indicated was assessed by the CCK-8 assays at different time points. Data represent the mean = SD of 4 independent experiments,
*p < 0.05 versus cisplain-only treatment. (d) After different treatments, the percentage of apoptotic cells was assessed by flow cytometry at
indicated time points. Data represent the mean = SD of 4 independent experiments, *p < 0.05 versus cisplain-only treatment.

form (tAIF) in IMS could be detected clearly. These results
implied that activated endogenous mitochondrial calpain in IMS
mainly plays a role in direct cleavage of 62-kDa intact AIF to 57-
kDa tAIF.

Knockdown of u-calpain reduces caspases activation in
cisplatin-induced apoptosis

To determine whether the alterations of caspases activities are
associated with suppression of p-calpain, we measured caspase-9/-
3 activities after downregulation of p-calpain. Compared with cis-
platin treatment alone, suppression of p-calpain, as well as pre-
treatment with calpeptin, obviously reduced the activities of cas-
pase-9 and -3 (Figs. 6a and 6b). Accordingly, the cell viability
was increased (Fig. 6¢) and the induced-apoptosis was decreased
(Fig. 6d) after knockdown of p-calpain.

Cathepsins and caspases are not necessary for
cisplatin-induced AIF release

A number of cysteine proteases, including caspases, cathepsins
and calpains, may be responsible for AIF cleavage. Our study
results demonstrated that p-calpain played an essential role in AIF
release; therefore, we tested whether cathepsins and caspases were
implicated in cisplatin-induced AIF release. To address this issue,
we used a panel of inhibitors for cathepsins and caspases. As
shown in Figures 7b and 7e, inhibition of cathepsins has no effect
on AIF release. The pan-caspase inhibitor, Z-VAD-fmk, has no
effect on AIF release either (Figs. 7b and 7c¢). These results
implied that cathepsins and caspases are not necessary for cispla-
tin-induced AIF release.

Discussion

Cisplatin is one of the most potent anticancer agents displaying
significant clinical activity against a variety of solid tumors, par-
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ticularly for lung cancers. A better understanding of the molecular
biological mechanisms of cisplatin could further improve its thera-
peutic outcome. Our previous studies showed that calpain played
an important role in cisplatin-induced apoptosis.** Tt is also
important to understand how calpain regulates cisplatin-induced
apoptosis. In the present study, we showed for the first time that pi-
calpain regulated both the caspase-dependent and AIF-mediated
caspase-independent apoptotic pathways in cisplatin-treated
human lung adenocarcinoma cells.

The mechanisms involved in cisplatin-induced apoptosis are
complex. Previous investigations demonstrated that caspases
cascade was activated in response to cisplatin exposure and such
actlvatlon led to an irreversible commitment to apoptotic cell
death."™ In our study, the activities of caspase 9/-3 sharply
increased after cisplatin treatment (Fig. 1), suggesting that cas-
pase-mediated apoptotic pathway was activated following cispla-
tin treatment. We also found that calpain mediated the caspases
cascade, because suppression of pi-calpain, as well as pretreatment
with calpeptin, obviously reduced the activities of caspase-9 and
-3 (Fig. 6). However, the pathways involved in the crosstalk
between the calpain and caspase proteolytic system is controver-
sial. Calpdm activation may be upstream or downstream of cas-
pases.*® In our study, we found that calpain activation was an

early event following cisplatin treatment, taking place well before
caspase-9/-3 activation (Figs. 1d, le and 4a); pretreatment with
calpeptin and PD150606, the calpain inhibitors, could greatly
reduce caspase-9/-3 activities (Fig. 6). These results implied that
calpain activation was the upstream of caspases in our experimen-
tal model. Some previous studies reported that apoptosis induced
by cisplatin also occurred through the Fas/FasL-activated caspase-
8/caspase-3 pathway However, as reported earlier, caspase-8
was not actlvated ruling out the apoptotic pathway in our experi-
mental model.*

Although caspases are important regulators of apoptosis, many
recent reports indicated that caspase- 1ndegendent mechanism was
involved in cisplatin-induced apoptosis.” We found that apopto-
sis following cisplatin treatment was significantly reduced by sup-
pressing AIF expression level (Fig. 2), suggesting that AIF-medi-
ated caspase-independent apoptotic pathway was involved. This
AlF-mediated apoptosis was associated with nuclear translocation
of AIF (Fig. 3).

It is also known that various factors can regulate AIF activation,
such as PARP, p53, Bax, Bid, calpains and cathepsins.'!"!724-3%
However, the nature of the involvement of these regulating factors
is not clearly established. In this study, we demonstrated that
suppression of p-calpain, either by siRNA or calpeptin, could



REGULATION OF CISPLATIN-INDUCED APOPTOSIS BY j-CALPAIN

completely block the AIF release and nuclear translocation (Figs.
4b, 5, 7a, 7c and 7d) in cisplatin-induced apoptosis. We also tested
the role of cathepsins and caspases in AIF release; the results
implied that both cytosolic proteolytic systems are not necessary
for cisplatin-induced AIF release.

A critical issue is how p-calpain gains access to the inner mem-
brane-bound AIF. The results reported by Polster et al. implied
that cytosolic p-calpain could gain access to AIF in isolated liver
mitochondria after MOMP mediated by Bax and Bak.>' Cao et al.
found that p-calpain normally localized in the IMS in isolated
brain mitochondria moved to the inner membrane of mitochondria
to cleave AIF during oxygen-glucose deprivation. These previous
studies suggested that, in ischemic neurons, p-calpain (from cyto-
solic and/or mitochondrial origin) could translocate to the mito-
chondrial inner membrane, leading to the truncation and release of
AIF.% Norberg et al. regorted that mitochondrial calpain may
cleave AIF to release it.”*’

In our study, we detected the mitochondrial localization of p-cal-
pain (Fig. 4c) in ASTC-a-1 cells; the truncation of AIF in cisplatin-
treated cells occurred before MOMP (Figs. 4d and 4e); further
study revealed that activated endogenous mitochondrial could
induce AIF truncation (Supporting Information Fig. 3). These
results indicated that p-calpain of mitochondrial origin initiated the
truncation of AIF; the cytosolic p-calpain may translocate to mito-
chondria to accelerate the process after MOMP. Therefore, based
on the previous studies and our findings, we speculate a working
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model for proteolytic processing-dependent release of AIF from mi-
tochondria in response to cisplatin exposure: apoptotic information
from the cytoplasm is transmitted by proapoptotic Bcl-2 family pro-
teins to alter mitochondrial environments (Step 1), thus triggering
mitochondrial pi-calpain activation (Step 2). The IMS portion of
AIF is proteolytically cleaved from the inner membrane (Step 3).
The mature AIF fragment is released from the mitochondria after
MOMP, possibly through a specific channel regulated by proapop-
totic Bcl-2 family proteins, such as Bid, Bax and Bak (Step 4).

In conclusion, the present study demonstrated that cisplatin
treatment induced not only caspase-dependent but also AIF-medi-
ated caspase-independent apoptotic pathways in human lung ade-
nocarcinoma cells. In response to cisplatin treatment, l-calpain
activation was an early event, and such activation played an im-
portant role in regulating both caspase-dependent and AIF-medi-
ated caspase-independent apoptotic pathways.
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