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Abstract. In this paper we study the transmission prop-
erties of light through generalized Thue-Morse (GTM (m, n))
aperiodic superlattices and obtain the formulae of the
transmission coefficients (TCs) analytically at the central
wavelength, which are confirmed by numerical simula-
tions. It is found that: (1) all of the 1st generation systems
are transparent to the substrates medium B; (2) GTM (m,
2 j) systems are transparent to the substrates medium B;
(3) GTM (2i, 2jþ 1) systems are translucent to the sub-
strates medium B except the 1st generation; and (4) when
i 6¼ j, transmission through GTM (2iþ 1, 2jþ 1) systems
attenuates rapidly with the increase of generation number l
and sequence parameters m, n. On the other hand, the po-
sitional correlations between the constituents of GTM (m, n)
aperiodic superlattices responsible for the resonant states
are also discussed. Based on the conclusions we study the
properties of the amplitude of the electric field vector and
find that they are different from those of periodic lattices
and chaotic systems.

1. Introduction

People have paid much attention to the quasilattices and
quasiperiodic superlattices since the fundamental discovery
of quasicrystals [1]. In particular, light propagation
through an optical quasiperiodic multilayers has been ex-
tensively studied. Kohmoto et al. [2, 3] investigated the
transmission of light through dielectric multilayers consist-
ing of two kinds of layers, which are arranging following
the one-dimensional (1D) Fibonacci quasiperiodic se-
quence and their theoretical results are confirmed by the
dielectric multilayers experiment. Later, the transmission
of light through the multilayers arranged by non Fibonac-
cian sequences was theoretically discussed [4, 5]. Huang
and co-workers [6–8] proposed a so-called intergrowth
quasiperiodic model, which is an extension of Fibonacci
one, and found an interesting switch-like property in the
optical transmission coefficient (TC). Based on the studies
of Fibonacci model and Intergrowth one, Fu et al. [9] con-
structed the Fibonacci-class ones, which are the perfect

extension of Fibonacci one, and the optical transmission
through the systems following these sequences was re-
searched by Yang et al. [10–12]. The transmission proper-
ties of generalized Fibonacci sequences, which are another
extensions of Fibonacci model, were explored by Klauzer-
Kruszyna et al. [13, 14].

On the other hand, being a bridge of linking periodic
systems with quasiperiodic models in a geometrical struc-
ture, Thue-Morse (TM) systems have attracted consider-
able attention over the past years. This model was firstly
systematically studied by Thue [15] in 1906, and the sub-
stitution-generated sequences in the context of topological
of dynamics were then researched by Morse [16] in 1921.
Cheng et al. [17] studied the structure and electronic prop-
erties of TM lattices and found that the structure factor is
composed of a sequence of d-function peaks just like qua-
siperiodic systems. Chattopadhyay and Chakrabarti [18]
showed that a TM aperiodic structure presents a unique
kind of positional correlation between its constituents,
leading to an unattenuated transmission of light as well as
electrons through it. Generalized Thue-Morse (GTM (m, n))
models, which are the generally extensions of TM, are
interesting aperiodic sequences and have been studied by
many groups. Nori et al. [19–21] researched the properties
of electron, magnetization, and light transmission of TM
and GTM (m, n) superlattices in detail. Wang et al. [22]
studied the properties of trace and antitrace maps for
GTM (m, n) models in 2000. The transmission properties
of light through the family B of GTM (m, n) multilayers
were recently investigated by us [23].

In this paper we study the optical transmission through
the generally GTM (m, n) superlattices, not only deduce
the total formulae of TCs at the central wavelength, but
also find and analyze the interesting transparent, subtrans-
parent, and attenuation characteristics of transmissions. It
would be useful for the designing of some optical devices.
On the other hand, the positional correlations between the
constituents of GTM (m, n) aperiodic superlattices respon-
sible for the resonant states are also discussed. Based on
the conclusions we study the properties of the amplitude
of the electric field vector and find that they are different
from those of periodic lattices and chaotic systems.

We organize this paper as follows: Section 2 is devoted to
introduce the substitution rules of GTM (m, n) sequences. In
Section 3, we present the analytical results and numerical
simulations of the optical transmissions. The positional cor-
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relations between the constituents responsible for the reso-
nant states are discussed in Section 4. Based on Section 4 we
study the properties of the amplitude of the electric field vec-
tor in Section 5. A brief summary is given in Section 6.

2. Generalized Thue-Morse models

GTM (m, n) models are a class of aperiodic sequences
generated by the following substitution rules [21–25]:

B! BmAn ;

A! AnBm ;
ð1Þ

where An denotes a string, AA . . . A, of n A’s. Starting with
a B, the first-two generations of GTM (m, n) are

G1 ¼ B ;

G2 ¼ BmAn ¼ Gm
1

�GGn
1 ;

ð2Þ

where �GG1 is the complementary of G1, and

�GG1 ¼ A ;
�GG2 ¼ AnBm ¼ �GGn

1Gm
1 :

ð3Þ

Equations (1)–(3) show the following recursion relation:

Gl ¼ Gm
l�1

�GGn
l�1 ;

�GGl ¼ �GGn
l�1Gm

l�1 ;
ðl � 2Þ : ð4Þ

3. Characteristics for optical transmission

Propagation of light through GTM (m, n) multilayers is il-
lustrated in Fig. 1, where the (complementary) system is
sandwiched by two media of material of type B(A). Using
the recursion relations (2)–(4), one can obtain the propa-
gation matrices and TCs through GTM (m, n) systems by
means of the propagation theory of the electromagnetic
wave as in Ref. [2, 10, 23].

On the other hand, people usually consider the simplest
experimental settings and take into account the cases of
vertical incidence (i.e., the incident angle d ¼ dA ¼ dB ¼ 0)
and identical optical phase difference for each layer, i.e.,

nAdA ¼ nBdB ¼
lC

4
; ð5Þ

where ni is the index of refractive of medium i, di is the
thickness of layer i, and lC is the central wavelength. In

order to make the quasiperiodicity of the aperiodic
GTM (m, n) systems be most effective [2, 10, 23], wave-
lengths should satisfy the quasi resonance condition
q ¼ ðlþ 1=2Þ p, where the quasi-phase q is the optical
phase difference between the ends of a layer and can be
denoted as follows [2, 10, 23]:

qi ¼
nidik

cos di
; ði ¼ A;BÞ ; ð6Þ

where k is the wave number in vacuum. Then in this paper
we choose

d ¼ dA ¼ dB ¼ 0 ;

q ¼ qA ¼ qB ¼ p=2 :
ð7Þ

On this condition, one can obtain the following character-
istics for optical transmission through GTM (m, n) sys-
tems.

3.1 All of the 1st generation systems for GTM (m, n)
superlattices are transparent

No matter what m and n are equal to, the TCs of the 1st
generation systems for GTM (m, n) superlattices are all
equal to 1.0, i.e., all of the 1st generation systems are
transparent.

From Eq. (2) one can see that, we choose B as the
beginning of GTM (m, n) sequences and then for arbitrary
m and n there exist G1¼ B. Meanwhile, in this paper we
select medium B as the substrates. Then, of course, the 1st
generation systems will fuse into one with the substrates
without any difference. This makes the 1st generation sys-
tems transparent to the substrates.

3.2 All of the GTM (m, 2j) Systems are transparent

The numerical simulations for GTM (1, 2), GTM (3, 2) and
GTM (5, 6) systems are illustrated in Fig. 2, where
nA¼ 3.0 and nB¼ 1.2. The sub-figures in the 1st to 3rd
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a� b�
Fig. 1. Propagation of light on the reflective and transmissive surface
of GTM (m, n) multilayers, where EI, ER and EO are the input, reflec-
tive, and output electric fields, respectively. (a) shows the case of
general GTM (m, n) systems, and (b) shows that of the 2nd genera-
tion of GTM (2, 3) system.

Fig. 2. The relationship between transmission coefficient T and quasi-
phase q=p, where Gi (i ¼ 2, 3, 6) denotes the i-th generation, and the
1st to 3rd columns are for the cases of GTM (1, 2), GTM (3, 2) and
GTM (5, 6) systems, respectively.
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rows are for the 2nd, 3rd, and 6th generations, respec-
tively. One can see that, for the three kinds of
GTM (2iþ 1, 2 j) system, all of the TCs at the points of
q=p ¼ 0:5 are equal to 1.0.

The results for GTM (2,2), GTM (2,4) and GTM (4,6)
systems are illustrated in Fig. 3, where nA ¼ 3:0 and
nB ¼ 1:2. The sub-figures in the 1st to 4th rows are for
the 2nd, 3rd, 4th and 6th generations, respectively. It is
found that, at the points of q=p ¼ 0:5, all of the TCs are
equal to 1.0.

In a word, when n is even, the TCs of GTM (m, n) are
all equal to 1.0 at the point of q ¼ p=2, i.e., all of the
GTM (m, 2 j) systems are transparent at the central wave-
length.

3.3 GTM (2i, 2 jþ 1) Systems are subtransparent
except the 1st generation

The numerical simulations for GTM (2, 1), GTM (2, 3) and
GTM (4, 5) systems are illustrated in Fig. 4, where
nA ¼ 3:0 and nB ¼ 1:2. The sub-figures in the 1st to 3rd
rows are for the 2nd, 3rd, and 6th generations, respec-
tively. One can see that, for the three kinds of GTM (2i,
2 jþ 1) system, at the points of q=p ¼ 0:5, all of the TCs
are equal to 0.4756.

In fact, we deduce analytically that the formula of the
TCs for these systems is as follows:

TGlð2i; 2jþ 1Þ ¼

1:0; ðl ¼ 1Þ
4

2þ nB

nA

� �2

þ nA

nB

� �2 ¼ Tsub ; ðl � 2Þ :

8>>><
>>>:

ð8Þ
In brief, if m is even and n is odd and from the 2nd

generation on, the TCs of GTM (m, n) are all equal to Tsub

except the first generation. In this paper we set nA¼ 3.0
and nB¼ 1.2, then Tsub� 0.4756� 1=2. That is to say, the

GTM (2i, 2 jþ 1) systems here are approximately translu-
cent at the central wavelength.

3.4 Transmission through GTM (2iþ 1, 2jþ 1)
systems attenuates rapidly with the increase
of parameters m, n and l when i 6¼ j

When m and n are all odd (i.e., m ¼ 2iþ 1 and
n ¼ 2 jþ 1), it can be demonstrated that the PMs are all
diagonal except the 1st generation, and the two non-zero
elements for every matrix are count-downs for each other,
which decreases or improves rapidly with the increase of
both generation number l and the sequence parameters m
and n when m 6¼ n. The corresponding TCs can be ex-
pressed as follows:

TGlð2iþ 1; 2jþ 1Þ

¼

1:0 ;

Tsub ;

4

2þ nB

nA

� �2y

þ nA

nB

� �2y ¼ Tdec ;

ðl ¼ 1Þ
ðl ¼ 2Þ ;

ðl � 3Þ

8>>>>><
>>>>>:

ð9Þ

where

y ¼ j2i� 2jj � ð2iþ 2jþ 2Þl�3 : ð10Þ
The numerical simulations for GTM (1, 1), GTM (1, 3)

and GTM (5, 7) systems are illustrated in Fig. 5, where
nA¼ 3.0 and nB¼ 1.2. The sub-figures in the 1st to 4th
rows are for the 2nd, 3rd, 4th and 7th generations, respec-
tively. One can see that, for the three kinds of
GTM (2iþ 1, 2 jþ 1) system and at the points of
q=p ¼ 0:5, (1) the TCs for GTM (1,1) systems equal to
1.0 except the 2nd generation; (2) all of the TCs for the
2nd generations are equal to 0.4756� 1=2; (3) the TCs for
GTM (1, 3) and GTM (5, 7) systems tend rapidly to be
zero with the increase of generation; and (4) if i ¼ j (e.g.,
for GTM (1, 1) system), then y ¼ 0 and Tdec¼ 1.0. It
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Fig. 3. The relationship between transmission coefficient T and quasi-
phase q=p, where Gi (i¼ 2, 3, 4, 6) denotes the i-th generation, and
the 1st to 3rd columns are for the cases of GTM (2, 2), GTM (2, 4)
and GTM (4, 6) systems, respectively.
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Fig. 4. The relationship between transmission coefficient T and quasi-
phase q=p, where Gi (i¼ 2, 3, 6) denotes the ith generation, and the
1st to 3rd columns are for the cases of GTM (2, 1), GTM (2, 3) and
GTM (4, 5) systems, respectively.
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means that, from the 3rd generation on, all of the TCs for
GTM (2iþ 1, 2iþ 1) systems are equal to 1.0. The analy-
tic results are confirmed by numerical simulations.

4. Positional correlations between the constitu-
ents responsible for the resonant states

In this section, we discuss the positional correlatons be-
tween the constituents of GTM (m, n) superlattices which
are responsible for the resonant (transparent) states.

4.1 All of the i2 j clusters form resonant states

On the condition of Eq. (7), one can demonstrate that the
propagation matrix of 2 j layers of medium i (i¼ A, B) is
a unit matrix multiplying (�1)j and the corresponding TC
is equal to 1.0. It means that, after many times of interfer-
ence every i2j cluster forms a resonant state and becomes a
transparent element at the central wavelength. This kind of
structures in GTM (m, n) superlattices do not influence the
optical transmissivity of the total system and can be deci-
mated from the 1D GTM (m, n) chains, i.e.,

ab2jg, ab ða; b; g ¼ A;BÞ ; ð11Þ

where , means equivalent.

4.2 From the 3rd generation on TM optical
superlattices form resonant states

TM model is the simplest one in GTM (m, n) families.
Being antisymmetric from the 2nd generation on, TM op-
tical superlattices possess interesting positional correlaton
between the constituents. Starting with a B, the 1D TM
chain can be obtained based on the recursion Eqs. (2–4)
of GTM (m, n) models. It can be demonstrated easily that,
from the 3rd generation on TM optical superlattices form
resonant states because of the antisymmetry and become

transparent at the central wavelength (see Fig. 5). For ex-
ample, we show the decimating procedure of the 3rd and
4th generations of TM optical superlattices as follows:

G3 ¼ BAAB, BB, Transparent ;

G4 ¼ BAABABBA, BBAA, Transparent :
ð12Þ

4.3 Positional correlations between constituents
of GTM (m, 2j) families make all of the systems
transparet to the substrates

Based on Eq. (11) one can also see that, at the central
wavelength the substitution rules for GTM (m, 2 j) optical
multilayers can be simplified as follows:

B! BmA2j , Bm , B ;

A! A2jBm , Bm , B :
ð13Þ

It means that at the central wavelength, all of the neigh-
boring A clusters in GTM (m, 2 j) optical superlattices form
resonant states and this makes the total systems be equiva-
lent to one layer of medium B. In this paper we choose
the substrates medium B, and of course, the positional cor-
relations between constituents of GTM (m, 2 j) families
make all of the systems transparet to the substrates med-
ium B at the central wavelength (see Figs. 2 and 3).

4.4 Positional correlations between constituents
of GTM (2i, 2jþ 1) families make all
of the systems subtransparet to the substrates
medium B except the 1st generation

Similarly to Section 4.3 one can also see that, at the cen-
tral wavelength the substitution rules for GTM (2i, 2 jþ 1)
optical multilayers can be simplified as follows:

B! B2iA2 jþ1 , A ;

A! A2 jþ1B2i , A :
ð14Þ

It means that at the central wavelength, all of the neigh-
boring B clusters in GTM (2i, 2 jþ 1) optical superlattices
form resonant states and this makes the total systems be
equivalent to one layer of medium A except the 1st gen-
eration. In this paper we choose the substrates medium B,
and of course, the positional correlations between constitu-
ents of GTM (2i, 2 jþ 1) families make all of the systems
subtransparet to the substrates medium B at the central
wavelength (see Ref. [2, 10, 23] and Fig. 4).

4.5 Positional correlations between constituents
of GTM (2iþ 1, 2jþ 1) families make the
systems attenuate rapidly with the increase
of parameters m, n and l when m 6¼ n

From Eq. (1) one knows that the substitution rules for
GTM (2iþ 1, 2 jþ 1) models are as follows:

B! B2iþ1A2 jþ1 ;

A! A2 jþ1B2iþ1 ;
ði; j � 0Þ : ð15Þ

Comparing with Secs. 4.3 and 4.4 we notice that, although
each A2j(B2i) cluster will still form resonant states and can be
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Fig. 5. The relationship between transmission coefficient T and quasi-
phase q=p, where Gi (i ¼ 2, 3, 4, 7) denotes the i-th generation, and
the 1st to 3rd columns are for the cases of GTM (1, 1), GTM (1, 3)
and GTM (5, 7) systems, respectively.
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decimated from the optical superlattices, here every A(B)
character will produce a string of A2 jþ1B2iþ1(B2iþ1A2 jþ1) in
the next generation, which makes optical transmission
attenuation. So for the total optical transmission effect,
every A2j(B2i) cluster can only be decimated from a spe-
cific sequence but not from the substitution rules, i.e.,
the substitution rules can not be simplified for these
families. This is the main difference between
GTM (2iþ 1, 2 jþ 1) and GTM (m, 2 j) (GTM (2i, 2 jþ 1))
systems. Fortunately, during the decimating procedure the
simplified result of the l-th generation can be substituted
for the item in recursion Eq. (4) directly. The decimating
procedure of the GTM (2iþ 1, 2 jþ 1) systems can be
expressed as follows:

G2 ¼ G2iþ1
1

�GG2jþ1
1 ¼ B2iþ1A2jþ1 , BA ;

�GG2 ¼ �GG2jþ1
1 G2iþ1

1 ¼ A2jþ1B2iþ1 , AB ;

(
ð16Þ

G3 ¼ G2iþ1
2

�GG2jþ1
2 , ðBAÞ2iþ1ðABÞ2jþ1 ,

i > j : ðBAÞ2i�2j

i ¼ j : Transparent ;

i < j : ðABÞ2j�2i

8><
>:

�GG3 ¼ �GG2jþ1
2 G2iþ1

2 , ðABÞ2jþ1ðBAÞ2iþ1 ,
i > j : ðBAÞ2i�2j

i ¼ j : Transparent ;

i < j : ðABÞ2j�2i

8><
>:

(17)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G4 ¼ �GG4

,
i > j : ½ðBAÞ2i�2j�2iþ1 ½ðBAÞ2i�2j�2jþ1 , ðBAÞð2i�2jÞð2iþ2jþ2Þ

i ¼ j : Transparent

i < j : ½ðABÞ2j�2i�2iþ1 ½ðABÞ2j�2i�2jþ1 , ðABÞð2j�2iÞð2iþ2jþ2Þ
;

8><
>:

(18)

Gl ¼ �GGl , ðABÞy; y ¼ j2i� 2jj � ð2iþ 2jþ 2Þl�3; ðl � 3Þ :

(19)

From Eqs. (16–19) one can deduce the formulae of the
TCs of GTM (2iþ 1, 2 jþ 1) optical superlattices at the
central wavelength, the result is exactly Eqs. (9, 10). Ob-
viously, the positional correlations between constituents of
GTM (2iþ 1, 2 jþ 1) families make the systems attenuate
rapidly with the increase of parameters m, n and l when
m 6¼ n.

5. Properties of the amplitude
of the electric field vector

Generally, the TC through the l-th generation of
GTM (m, n) optical superlattices can be defined as follows
[2, 10, 23]:

TGl ¼
jEOj2

jEIj2
; ð20Þ

where EO and EI are the amplitudes of the output and
input electric fields, respectively (see Fig. 1). In this paper
we use the small-signal approximation and plane wave
model to investigate the optical transmission of
GTM (m, n) systems and do not consider the absorption

by thin films. So for periodic lattices (e.g., (AB)p system)
the amplitude of the electric field for the central wave-
length at the output interface attenuates with the increase
of the periodic number p, the formula can be experessed
as follows:

Tperiodic ¼
4

2þ nB

nA

� �2p

þ nA

nB

� �2p ¼
jEOj2

jEIj2
: ð21Þ

For chaotic systems the transmission result is indetermi-
nate.

Based on Section 4 one can see that for the central
wavelength, there are many kinds of GTM (m, n) families
forming resonant states and making the amplitude EO be
constant. It is quite different from those of periodic lat-
tices and chaotic systems.

(1) By means of the conclusions of Sections 4.2 and
4.5 one can find that when m ¼ n, the GTM (m, m) fa-
milies form resonant states from the 3rd generation on for
the central wavelength and make the amplitude EO be
equal to EI without any attenuation.

(2) Based on Sections 4.3 and 4.4 one can see that, the
GTM (m, 2 j) (GTM (2i, 2 jþ 1)) families form resonant
states and make the total systems be equivalent to one
layer of medium B(A) except the 1st generation at the cen-
tral wavelength. It makes the amplitude EO be constant (be
equal to EI (0.707EI) to the substrates.

(3) Based on Section 4.5 one can obtain that when
m 6¼ n, the GTM (2iþ 1, 2 jþ 1) families do not form re-
sonant states and make the amplitude EO attenuate rapidly
with the increase of parameters m, n and l when m 6¼ n. It
is similar to the property of periodic systems.

6. Brief summary

Firstly, we introduce the substitution rules of GTM (m, n)
sequences. By means of the electromagnetic wave theory
we then study the propagations of light through
GTM (m, n) aperiodic superlattices and obtain the formu-
lae of the TCs analytically.

Taking into account the odevity of the two parameters
m and n, we present the formulae in four cases. (1)
GTM (m, n) Systems for the 1st generation are all transpar-
ent to the substrates medium B, (2) GTM (m, 2 j) Systems
are all transparent to the substrates medium B, (3)
GTM (2i, 2 jþ 1) systems are translucenct, and (4) when
i 6¼ j transmission through GTM (2iþ 1, 2 jþ 1) systems
attenuates rapidly with the increase of m, n and l. The
stable transparent property, stable translucency one, and
rapidly zero tendency of GTM (m, n) superlattices could be
applied to the design of some optical devices. These analy-
tic results are all confirmed by numerical simulations.

The positional correlations between the constituents of
GTM (m, n) aperiodic superlattices responsible for the re-
sonant states are also discussed. Based on the conclusions
we study the properties of the amplitude of the electric
field vector and find that they are different from those of
periodic lattices and chaotic systems.
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