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Mitotic Kinase Aurora-A Induces Mammary
l Migration and Breast Cancer Metastasis

R

ctivating the Cofilin-F-actin Pathway
Wang1,5, Jin Xiang1, Min Yan1, Yan Zhang1, Yan Zhao1, Cai-feng Yue1, Jie Xu1, Fei-meng Zheng1,

Chen1, Zhuang Kang3, Tong-sheng Chen5, Da Xing5, and Quentin Liu1,2,4
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mitotic kinase Aurora-A (Aur-A) is required to form the bipolar spindle and ensure accurate chromo-
segregation before cell division. Aur-A dysregulation represents an oncogenic event that promotes tumor
tion. Here, we report that Aur-A promotes breast cancer metastasis. Aur-A overexpression enhanced
ary cell migration by dephosphorylation and activation of cofilin, which facilitates actin reorganization
lymerization. Cofilin knockdown impaired Aur-A–driven cell migration and protrusion of the cell mem-
Conversely, overexpression of activated cofilin abrogated the effects of Aur-A knockdown on cell mi-
n. Moreover, Aur-A overexpession increased the expression of the cofilin phosphatase Slingshot-1
), contributing to cofilin activation and cell migration. We found that phosphatidylinositol 3-kinase
inhibition blocked Aur-A–induced cofilin dephosphorylation, actin reorganization, and cell migration,
ting crosstalk with PI3K signaling and a potential benefit of PI3K inhibition in tumors with deregulated
. Additionally, we found an association between Aur-A overexpression and cofilin activity in breast
tissues. Our findings indicate that activation of the cofilin-F-actin pathway contributes to tumor cell
cancer

migration and metastasis enhanced by Aur-A, revealing a novel function for mitotic Aur-A kinase in tumor
progression. Cancer Res; 70(22); 9118–28. ©2010 AACR.
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serine/threonine Aurora kinase family, including
a-A, Aurora-B, and Aurora-C, play an important role
uring genetic stability in cell division (1). Activation
ora A (Aur-A) requires a variety of cofactors, such as
Ajuba, PAK1, HEF1, and hBora, and it is inhibited by
n phosphatase-1–dependent dephosphorylation (2).
d others have shown that Aur-A is essential in accu-
ming of mitosis and maintenance of bipolar spindles
Aur-A is physically associated with hBora,
promotes activation of Polo-like kinase 1,
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g the activation of cyclin-dependent kinase 1 (CDK1)
itotic entry (5). Overexpression of Aur-A leads to
some amplification and subsequent formation of mul-
r spindle structures, causing genetic instability or
loidy (4). Mouse NIH3T3 cells transfected with Aur-A
ise to tumors when injected into nude mice (6). The
ssion of Aur-A increases in certain types of cancer
ing breast, bladder, ovarian, colon, and pancreas (7).
tly, our data showed that Aur-A increases laryngeal
r cell migration (8). However, the precise role of
in cancer invasion and metastasis remains largely
wn.
umor cells, acquisition of migratory ability is a charac-
c that contributes to the spread of metastatic tumor
o distant organs (9). Cell migration is physically medi-
y actin cytoskeleton and is initiated by the protrusion
cell membrane (10). Cofilin has emerged as an essen-
ayer for the localized formation of the barbed ends,
act as sites for new local actin polymerization, thus
ining the direction of cell protrusion and movement
xpression of the wild-type or the nonphosphorylatable
of the cofilin mutant S3A increases melanoma cell
tion and invasion (12), whereas depletion of cofilin
rs cell motility (13). Indeed, the phosphorylation site
ilin localizes in the actin-binding domain and inhibits
ding to filamentous actin (F-actin), completely inhibit-
filin ability to promote filament disassembly (14–17).

dephosphorylated, cofilin binds actin filaments to pro-
actin turnover (18). Therefore, cofilin activity regulated
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phosphorylation status determines the cytoskeleton
ics and cell motility.
activity of cofilin is tightly regulated by phosphor-

n and the binding of phosphatidylinositol-(4,5)-
sphate (19, 20). The serine/threonine kinases LIMK
ESK phosphorylate cofilin on the Ser3 residue,
ring it inactive (14, 21, 22). Suppression of cofilin
y by LIMK overexpression abolishes lamellipodium
tion and polarized cell migration (23). Phosphatase
hot-1 (SSH1), which may be regulated by phos-
ylinositol 3-kinase (PI3K), dephosphorylates and
tes cofilin, thereby stimulating the severing and
ymerization of actin (18, 24). Insulin-stimulated
cells exhibit SSH1 activation and cofilin dephos-

lation that can be abrogated by PI3K inhibition
dditionally, SSH1 activity is directly stimulated by
n binding, indicating that existing actin filaments
romote actin reorganization through SSH1-mediated
activation (26).
present data showed that overexpression of Aur-A
ced cell motility and promoted the lung metas‐
of breast cancer. Overexpression of Aur-A in-
d the nonphosphorylated, active form of cofilin
hancing SSH1 expression, which in turn promoted
reorganization. Importantly, we found a signifi-
correlation between Aur-A expression and cofilin
sphorylation in the immunohistochemical analysis
ical breast cancer specimens, supporting a novel
ing mechanism by which Aur-A induced cofilin
sphorylation and actin reorganization, thus

ting mammary cell movement and breast cancer Cellul
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rials and Methods

nes and cell culture conditions
an breast epithelial cell lines (MCF-10A, MCF-7,

-3, and MDA-MB-435) and a cervix epithelial cell line
) were obtained from the American Type Culture
tion and used within 2 months after resuscitation
zen aliquots. Cell lines were authenticated based on
ty, recovery, growth, morphology, and isoenzymo‐
y the supplier. Culture conditions are described in
mentary Data.

imental lung metastasis model
ale BALB/c nude mice (5–7 weeks old) were

ased from SLRC Laboratory Animal and maintained
eated under specific pathogen-free conditions. Cells
06 per mouse) were injected i.v. via the tail vein. After
ks, lungs were removed and examined macroscopi‐
or detected in paraffin-embedded sections stained
&E.

etic resonance imaging

netic resonance imaging (MRI) examinations were
cted on a GE (Signal Twin Speed Excite II) 1.5-T scan-

oligon
as we

acrjournals.org
th a 77 mT/m (150 mT/m ms) gradient system at room
rature.

id construction and stable cell line generation
ilin S3A or S3E was subcloned into pBabe vector. Aur-A
agged) was subcloned into pcDNA6B vector. MCF-10A
tably expressing Aur-A were constructed as previously
bed (8). MDA-MB-435 cells stably expressing Aur-A
tagged) were constructed with a lentivirus vector
T).

rn blot analysis
stern blot was done with antibodies against glyceralde-
3-phosphate dehydrogenase (Ambion), Flag (Sigma),
(Abcam), Aur-A (Upstate), phosphorylated Aur-A
8; Cell Signaling), cofilin (Cell Signaling), phosphory-
cofilin (Ser3; Cell Signaling), Akt1 (Cell Signaling), and
horylated Akt1 (Ser473; Cell Signaling).

well migration assay
nswell assay was performed as described previously (8).
s were shown as average from at least three indepen-
xperiments. Error bars represented the SD.

d healing assay
ls were grown to confluence on 24-well plates. The
layers were wounded with a P10 micropipette tip.
graphs of wound healing were taken at the indicated
oints.

ar F-actin/G-actin assay
ctin and globular actin (G-actin) fractions were
ed using an F-actin/G-actin assay kit (BK 037,

keleton).

oidin staining
ole cell phalloidin staining was performed according to
anufacturer's protocol (Sigma P5282). Nuclei were
d with 4′,6-diamidino-2-phenylindole (DAPI) and
with Olympus IX71.

sis of Triton-soluble and insoluble actin
measure Triton-soluble actin, cytoskeletal proteins
xtracted and subjected to Western blot analysis with
dicated antibodies as previously described (27).

nofluorescence staining
s were fixed and permeabilized. Slides were incuba-
ith the indicated antibodies for 60 minutes. The
ne complexes were stained with secondary anti-
conjugated to Alexa-488 or Alexa-680 (Molecular
s). Nuclei were stained with DAPI and viewed with
us IX71.

interfering RNA transfection
ls were transfected as previously described (8). RNA

ucleotide duplexes targeted to Aur-A, cofilin, and SSH1
ll as negative control were purchased from Shanghai

Cancer Res; 70(22) November 15, 2010 9119
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1. Overexpression of Aur-A significantly enhances cell migration and breast cancer metastasis. A, the migratory properties of control
r-A–overexpressing cells were analyzed by transwell assay (top). Data were summarized from three independent experiments. Aur-A
ion level was detected by Western blot analysis (bottom). B, left, representative photograph of a lung specimen. Lung tissues from

jected with MDA-MB-435-control and MDA-MB-435-Aur-A cells were analyzed by H&E staining (middle; ×100) and MRI (right). Arrows,
tic nodules. C, the number of lung metastasis was counted in paraffin-embedded sections stained with H&E.

r Res; 70(22) November 15, 2010 Cancer Research
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harma Co., Ltd. The RNA sequences are provided in
mentary Data.

denylate tail length assay
polyadenylate tail length (PAT) assay was carried out
cribed previously (28). The sequences of the primers
ovided in Supplementary Data.

ynchronization and cell cycle analysis
l synchronization and cell cycle analysis were per-
d as previously described (29).

ts and clinical tissue specimens
tal of 99 breast tissue specimens were selected for
is. Specimens were fixed in formalin and embedded
affin in the diagnostic histopathology laboratory at
r Center, Sun Yat-sen University.

nohistochemical staining and statistical analysis
unohistochemical staining was performed as

bed previously (8). The staining intensity and extent
r-A and phosphorylated cofilin (Ser3) were graded
cribed previously (30, 31). Due to the small sampling

isher's exact test was used to analyze the significance
erences.

cause

alysis (bottom).

acrjournals.org
tics
χ2 test and Student t test were used to make statisti-

mparisons between groups. All P values were two sided.
.05 was considered statistically significant. We
med each study at least three times under identical
ions.

lts

xpression of Aur-A significantly enhances cell
tion and breast cancer metastasis
oncancerous breast epithelial cell line, MCF-10A, and
east cancer cell lines, SK-BR-3 and MDA-MB-435, were
ently transfected with Aur-A. Cell migration assay was
med, and we found that Aur-A enhanced cell migration
cantly in all three cell lines (Fig. 1A). Wound healing
showed that MCF-10A-Aur-A cells migrated into the
area faster than MCF-10A-control cells (Supplemen-

ig. S1). We compared cell growth rates between cells
und that overexpression of Aur-A did not produce a
cant increase in cell number up to 2 days (Supplemen-
igs. S2A and S3A). Cell migration assay was performed
than 1 day, indicating that the higher rate of migration

d by Aur-A overexpression was not contributive to a
more rapid division. To clarify whether Aur-A–enhanced cell
2. Aur-A regulates actin
ation and polymerization.
unofluorescence analysis
rformed using FITC-labeled
in (F-actin; green). Nuclei
ained with DAPI (blue).
rlay of the two fluorescent
is shown (×1,000).
tin and G-actin fractions
epared from MCF-10A-
and MCF-10A-Aur-A cells
wo cell lines were treated
actin depolymerization
cytochalasin D; middle)
tin enhancing factor
din; bottom). F-actin and
fractions were prepared
jected to Western blot
[S, supernatant part
); P, pellet part (F-actin)].
tin and G-actin fractions
epared from control siRNA–
A siRNA–treated MCF-10A
d subjected to Western blot
. D, MCF-10A cells were
with increasing dose of
for 16 h, followed by
fluorescence analysis. The
ent signals of F-actin
along with the nuclei (blue)
wn (×1,000; top). F-actin
actin fractions were
d and subjected to Western
Cancer Res; 70(22) November 15, 2010 9121
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3. Aur-A regulates activation of the actin binding protein cofilin. A, a, MCF-10A-control and MCF-10A-Aur-A cells were lysed and subjected to
n blot analysis with the indicated antibodies. b, MCF-10A cells were treated with 25 μmol/L anacardic acid for 5 min. Cell lysates were subjected
tern blot analysis with the indicated antibodies. B, MCF-10A-control and MCF-10A-Aur-A cells were coimmunostained with FITC-labeled F-actin
ofilin or cofilin antibodies. The fluorescent signals of cofilin or p-cofilin (Green) along with F-actin (red) are shown (×1,000). C, MCF-10A-control
F-10A-Aur-A cells were lysed using cytosol buffer (top) and Triton X-100–based solubilization buffer (bottom). Cell lysates were further subjected

tern blot analysis with the indicated antibodies. D, MCF-10A cells were treated with increasing dose of Aur-A siRNA (a) or VX-680 (b). Cell lysates
bjected to Western blot analysis with the indicated antibodies.

r Res; 70(22) November 15, 2010 Cancer Research
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tion was related to a particular phase in cell cycle, we
onized MCF-10A-control and MCF-10A-Aur-A cells at
nd G2-M phases (Supplementary Fig. S2B). Migration
showed that Aur-A–enhanced cell migration in all cell
phases (Supplementary Fig. S2C and D). We used
MB-435 cells to test our findings in an experimental
tasis model. As shown in Supplementary Fig. S3, the
n of cell proliferation, as well as Aur-A cellular local-
, cell cycle–dependent expression, and specific phos-
lation states, did not show significant differences
en MDA-MB-435-control and MDA-MB-435-Aur-A
ice injected with MDA-MB-435-Aur-A cells had a sig-

ntly increased metastatic burden as measured by
graphy, H&E staining, and MRI (Fig. 1B). MDA-MB-
ntrol cells formed 3 to 19 metastatic nodules per
In contrast, mice injected with MDA-MB-435-Aur-A
ormed 30 to 90 nodules per lung (Fig. 1C), indicating
verexpression of Aur-A significantly increased meta-
spread. Taking these data together, we showed that
enhances breast cell migration and breast cancer

tasis.

reduction of Aur-A expression and inhibition of
kinase activity decrease cell migration
t, we found that suppression of Aur-A reduced the abil-
cells to migrate (Supplementary Fig. S4A). Cell migra-
say showed that VX-680, a small molecular inhibitor of
a kinases, effectively prevented cell movement in a
ependent manner (Supplementary Fig. S4B). More-
ontrol cells migrated into the wound closure within
rs, whereas VX-680–treated cells were significantly less
, as shown by the delay in the mean time of closure
lementary Fig. S5).

regulates actin organization and polymerization
next determined if differences in actin cytoskeletal
ization could explain the migratory function of
. In control cells, actin was diffusely distributed
hout the cytoplasm (Fig. 2A, left). In contrast, in
–overexpressing cells, F-actin structures were formed
e actin-rich lamellipodial protrusions around the pe-
y of the cell with a few thin stress fibers located
the cell body (Fig. 2A, right). Because the rates of

erization and depolymerization of actin were impor-
eterminants of cell motility, the cellular F-actin/
n assay was carried out. Aur-A markedly increased
ount of F-actin (Fig. 2B, top). Moreover, we treated
control and Aur-A–overexpressing cells with the
depolymerization factor cytochalasin D. F-actin in

–overexpressing cells was not depolymerized as
red with control cells (Fig. 2B, middle). When cells
treated with the F-actin enhancing factor phalloidin,
atus of F-actin polymerization in Aur-A–overexpres-
ells did not change significantly (Fig. 2B, bottom).
ellular F-actin/G-actin assay also showed that G-actin
ore abundant in Aur-A–depleted cells (Fig. 2C).
tion of Aur-A activity by VX-680 typically resulted in
isappearance of actin-rich membrane ruffles and

cells r
[Fig. 4

acrjournals.org
a decrease in detectable leading-edge protrusions
2D, top). The actin polymerization rates were de-
d as well (Fig. 2D, bottom). Thus, Aur-A–driven cell
ent is associated with dramatic reorganization of
cytoskeleton and formation of lamellipodia at the
g edge.

regulates activation of the actin binding
in cofilin
ilin, an actin binding protein, regulates the rates of ac-
lymerization and depolymerization (32). As shown in
, overexpression of Aur-A or stimulation of Aur-A ac-
by using the Aur-A kinase activator anacardic acid in-
a larger pool of the nonphosphorylated active form of
(total cofilin was unchanged). Next, we found that in
l cells, cofilin was distributed diffusely in the cyto-
without associating with actin stress fibers, whereas

r-A–overexpressing cells, cofilin was colocalized with
n and recruited to the leading edge (Fig. 3B, top). In
st, the distribution of phosphorylated cofilin showed
ferences between control and Aur-A–overexpressing
(Fig. 3B, bottom). Additionally, we observed that
reduced cofilin phosphorylation in the cytoplasm
C, top). Moreover, Aur-A induced enrichment of cofilin
detergent-insoluble fraction (Fig. 3C, bottom left),
was known to include actin-associated proteins. In
l cells, cofilin was mainly in the detergent-soluble part,
largely disappeared following overexpression of Aur-A
3C, bottom right). Reduction of Aur-A expression
D(a)] or decrease in its kinase activity by VX-680
D(b)] induced phosphorylation of cofilin and reduced
ivity, which was consistent with the defects observed
in polymerization (Fig. 2D). Transient overexpression
r-A in HeLa and MCF-7 cells also caused reduction
ilin phosphorylation (Supplementary Fig. S6). These
ndicate that Aur-A induces cofilin activity to remodel
fiber.

n activity mediates Aur-A–driven mammary cell
tion and actin organization
address the dependence of Aur-A–induced cell migra-
n cofilin, we depleted endogenous cofilin using specific
interfering RNA (siRNA) and found that both cofilin
-cofilin decreased in control and Aur-A–overexpressing
Fig. 4A(a)]. Following depletion of cofilin, overexpres-
f Aur-A failed to enhance cell migration [Fig. 4A(b)].
ver, cofilin siRNA suppressed Aur-A–induced actin
nization (Fig. 4B). To analyze if cofilin activity contrib-
to Aur-A–induced cell migration and actin poly
ation, we expressed dominant-active or inactive cofil‐
tants in control and Aur-A–overexpressing cells
C). Expression of the active nonphosphorylatable cofi-
A mutant in control cells had apparent effects on cell
tion and actin polymerization, mimicking the Aur-A
type [Fig. 4D(a)]. Expression of an inactive phosphory-
-mimic cofilin S3E mutant in Aur-A–overexpressing

eversed the cell migration and actin polymerization
D(b)]. Furthermore, we ectopically introduced vector

Cancer Res; 70(22) November 15, 2010 9123
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l, the active form of cofilin S3A, or the inactive form of
S3E into Aur-A siRNA–treated cells. Transwell assay
d that the active form of cofilin S3A reversed Aur-A
–induced reduction in cell migration, whereas the in-
form of cofilin S3E did not have any effects (Supple-
ry Fig. S7), providing additional evidence that cofilin
y has an essential role in Aur-A–driven cell motility.

upregulates cofilin activity by increasing the
ssion of the cofilin phosphatase SSH1
1 is known to regulate actin filament dynamics by de-
horylating and activating cofilin (18). The expression of
was increased in Aur-A–overexpressing cells [Fig. 5A
ft] but was decreased in MCF-10A cells treated with
siRNA [Fig. 5A(a), right]. Aur-A has been found to

horylate cytoplasmic polyadenylation element (CPE)
g protein (CPEB) and promote the mRNA polyadeny-

SSH1
cofilin

r Res; 70(22) November 15, 2010
and translation of CDK1 and cyclin B1 (33). We found
he 3′ untranslated region of SSH1 mRNA contained a
onsensus sequence, UUUUUAU (34), which interacted
PEB, playing a crucial role in promoting translation
s shown in Fig. 5A(b), overexpression of Aur-A elongat-
polyadenylate [poly(A)] tail of SSH1 in the PAT assay,
ting that Aur-A increased SSH1 expression by promot-
translation. Additionally, depletion of SSH1 blocked

–induced cofilin dephosphorylation [Fig. 5B(a)] and
igration [Fig. 5B(b)]. We next found that inhibition of
ith 100 nmol/L wortmanin blocked Akt1 phosphory-
and suppressed Aur-A–induced cofilin dephosphoryla-
Fig. 5C(a)] and cell migration [Fig. 5C(b)]. Moreover,
–induced actin reorganization was totally blocked by
annin (100 nmol/L; Fig. 5D). These results suggest that

as well as PI3K play a critical role in Aur-A–induced
activity and cell migration.
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5. Aur-A upregulates cofilin activity by increasing the expression of the cofilin phosphatase SSH1. A, a, SSH1 expression of control and Aur-A–
ressing cells was detected by Western blot analysis (left). SSH1 expression of control siRNA or Aur-A siRNA treated cells was detected by Western blot
(right). b, a PAT assay was performed using specific primers to SSH1. B, MCF-10A-control and MCF-10A-Aur-A cells were treated with control siRNA or
iRNA. a, cells were lysed and subjected to Western blot analysis with the indicated antibodies. b, the migratory properties of the cells were analyzed by
ll assay. Data are averages from three independent experiments. C, a, MCF-10A-control and MCF-10A-Aur-A cells were treated with the PI3K inhibitor
nnin (Cell Signaling; 100 nmol/L). Cells were lysed and subjected to Western blot analysis with the indicated antibodies. b, the migratory properties of the

re analyzed by transwell assay. Data were summarized from three independent experiments. D, the fluorescent signals of F-actin (red) along with the
lue) are shown (×1,000).

Cancer Res; 70(22) November 15, 2010acrjournals.org 9125
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