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Summary

• Vacuolar processing enzyme (VPE), a cysteine protease, has been intensively studied in

plant hypersensitive cell death, but the role and molecular mechanism of VPEs in response to

abiotic stresses remain unclear. This work investigated the involvement of VPEs in Arabidopsis

response to heat stress.

• Under heat shock (HS), Arabidopsis VPE activity and the transcript level of cVPE were both

upregulated, and cVPE deficiency suppressed vacuolar disruption and delayed caspase-3-like

activation in HS-induced programmed cell death (PCD). Moreover, the change of VPE activity

generally paralleled the alteration of caspase-1-like activity under HS treatment, indicating

that HS-induced VPE activity might exhibit the caspase-1-like activity.

• Further studies showed that MAP Kinase 6 (MPK6) activity was increased after HS treat-

ment, and experiments with inhibitors and mutants suggested that MPK6 was responsible for

the cVPE activation after HS treatment. In response to HS stress, reactive oxygen species

(ROS) production, increase of cytoplasmic calcium concentration ([Ca2+]cyt) and the upregula-

tion of calmodulin 3 (CaM3) transcript level occurred upstream of MPK6 activation.

• Our results suggested that activation of Arabidopsis cVPE was mediated by MPK6 and

played an important role in HS-induced Arabidopsis PCD, providing new insight into the

mechanistic study of plant VPEs.

Introduction

In plants, genetic programmes for cellular suicide are triggered in
response to various environmental biotic and abiotic stresses
(Danon et al., 2004; Greenberg & Yao, 2004; Lam, 2004). The
term programmed cell death (PCD) in plants includes various
forms of cell death composed of a number of orderly processes
mediated by intracellular signaling molecules, regardless of the
triggers or the hallmarks it exhibits (Zhang & Xing, 2008; Li &
Xing, 2011). Heat shock (HS), one of the important environ-
mental stresses, could trigger PCD and several apoptosis-like
characters upon exposure to HS have been described in plant
cells including DNA ladder, fragmentation of the nucleus and
the release of cytochrome C (Vacca et al., 2006; Zuppini et al.,
2006). In our previous paper, we investigated the reactive oxygen
species (ROS) production, changes of mitochondrial function
and morphology, as well as the protective roles of HsfA2 (Zhang
et al., 2009a). However, the mechanistic analysis of plant
response to HS stress, especially the signaling pathway leading to
the execution of PCD, is still lacking in many studies.

Extensive research has provided increasing evidence that
PCD in plants and animals shares common events including

mitochondrial dysfunction and activation of caspase cascade
(Cohen, 1997; Lam & del Pozo, 2000; Lam et al., 2001;
Woltering et al., 2002). Moreover, numerous reports indicate
that proteases with caspase-like activity exist in plants and medi-
ate processes of cell death in development and stress responses
(Woltering et al., 2002; Sanmartin et al., 2005). Our recent
studies have detected the caspase-3-like activation in Arabidopsis
PCD induced by UV-C and Aluminum toxicity (Zhang et al.,
2009b; Li & Xing, 2011).

Previous work has reported the vacuole-localized cysteine pro-
teases called vacuolar processing enzymes (VPEs), which were
originally discovered in the maturation of seed storage proteins
(Hara-Nishimura et al., 1991). VPEs are endopeptidases with a
substrate-specificity towards asparagine residues. They are synthe-
sized as inactive larger pro-protein precursors, from which the
C-terminal and N-terminal propeptides are sequentially removed
self-catalytically to produce the active mature forms at acidic
condition (pH 5.5) (Kuroyanagi et al., 2002). Studies have provided
evidence that VPEs are involved in virus-induced hypersensitive
cell death in tobacco and exhibit caspase-1-like activity (Hatsugai
et al., 2004; Kuroyanagi et al., 2005). Although the two enzymes
VPEs and caspase 1 share several structural properties, there is
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limited sequence identity between them. Full-genome analysis
indicates that there are no caspase-encoding genes in Arabidopsis
genome; furthermore, the subcellular localizations of the two
proteases are different: VPEs are localized in the vacuoles, unlike
animal caspases which are localized in the cytosol (Hatsugai
et al., 2006).

The Arabidopsis genome has four VPE genes: aVPE, bVPE,
cVPE and dVPE, which can be separated into two subfamilies:
vegetative-type VPEs and seed-type VPEs. aVPE and cVPE are
expressed in vegetative organs, whereas bVPE and dVPE are
expressed in seeds (Kinoshita et al., 1999; Gruis et al., 2002,
2004). The bVPE is essential for the proper processing of storage
proteins (Shimada et al., 2003), and dVPE specifically expressed
in the seed coat is associated with cell death (Nakagami et al.,
2005). By contrast, the vegetative aVPE and cVPE are up-
regulated during wounding, senescence and pathogen infection,
and may play vital roles in various types of cell death in plants
(Kinoshita et al., 1999; Yamada et al., 2004). Recently, VPEs have
been identified as plant-specific caspases and a VPE-mediated vacu-
olar system has been considered as a cellular suicide strategy in plant
development and cell death programmes (Hatsugai et al., 2004,
2006). Previous research into plant VPEs has mostly focused on
plant senescence, terminal differentiation and pathogen-induced
hypersensitive cell death. By contrast, the molecular mechanisms
underlying the roles of VPEs in response to abiotic stresses are
poorly understood.

Alteration to the phosphorylation state of proteins plays a cen-
tral role in cellular signal transduction. Mitogen-activated protein
kinase (MAPK) cascades are conserved pathways by which extra-
cellular stimuli can be transduced into intracellular responses in
all eukaryotic cells (Widmann et al., 1999; Davis, 2000; Kyriakis
& Avruch, 2001; Tena et al., 2001; Zhang & Klessig, 2001; Asai
et al., 2002; Nakagami et al., 2005). Each MAPK cascade mini-
mally consists of three kinases: MAPKKK, MAPKK and MAPK.
In the Arabidopsis genome, 20 MAPKs, 10 MAPKKs and 60
MAPKKKs have been identified (Asai et al., 2002; Ichimura
et al., 2002). It is well documented that MAPK plays key roles in
the regulation of innate immunity and adverse stress responses
(Ichimura et al., 2002; Xing et al., 2008). Under HS treatment,
MAPK activity has also been detected (Chen et al., 2008), but it
remains to establish a specific MAPK cascade which mediates the
response to HS stress. A decade ago, MKK1 was first identified as
a member of the group of phosphorelay signaling pathway that
controls MAPK activation (Morris et al., 1997). Recent investi-
gations have verified a MAPK cascade, extending from MEKK1
through MKK1 ⁄ 2 to MPK4 ⁄ 6 in response to abscissic acid and
environmental stresses including cold and high salinity (Teige
et al., 2004; Xing et al., 2008). MPK6, as a well-characterized
terminal of MAPK cascade in Arabidopsis, can be activated by
various environmental stresses and participate in the regulation of
several functional proteins including catalase, nitrate reductase,
ethylene response factor 104 and so on (Morris et al., 1997;
Teige et al., 2004; Xing et al., 2008, 2009; Bethke et al., 2009;
Wang et al., 2010).

ROS and calcium (Ca2+) are believed to be the key signaling
molecules in plant cells (Fluhr & Bowler, 2000; Romeis et al.,

2001), and previous reports have implicated both of them in the
activation of MAPK cascades under various stimuli (Xing et al.,
2008; Wang et al., 2010). Calmodulin (CaM), an ubiquitous
second messenger, acts as the crucial sensor protein in plant signal
transduction. In Arabidopsis, CaM has several isoforms and dif-
ferent isoforms can interact with their particular targets upon the
different exogenous stimuli. For example, CaM is believed to be
necessary for the cellular signaling transduction in Arabidopsis
response to cold and heat stresses (Gong et al., 1997; Tahtiharju
et al., 1997). Among the isoforms of CaM, CaM3 is considered
as a key component of Arabidopsis HS signaling pathway, and
the Ca2+-CaM3 cascade participates in the activation of down-
stream functional proteins under HS treatment (Gong et al.,
1997; Xuan et al., 2010).

In this paper, the possible molecular mechanisms underlying
the process of VPE-mediated PCD under HS treatment were
investigated. Our result indicated that cVPE, among the four
Arabidopsis VPEs, was upregulated by HS treatment and played
an important role in HS-induced Arabidopsis PCD. Moreover, a
MPK6-modulated signaling cascade was demonstrated to be
responsible for the activation of cVPE under HS stress.

Materials and Methods

Plant materials and chemical reagents

Plants of wild-type Arabidopsis thaliana (L.) Heynh (ecotype
Columbia), Arabidopsis VPE-null mutant (vpe) and cvpe-1
single mutant (cvpe), CaM3-lacking mutant (cam3;
SALK_001357), as well as MPK6-overexpressing (MPK6-OE)
Arabidopsis and several Arabidopsis mutants lacking MAPK
genes (mpk6-2, SALK_073907; mpk6-3, SALK_127507;
mpk3-1, SALK_151594; mpk4-1, NC_003075; purchased from
NASC ⁄ ABRC) were used. The VPE mutants of Arabidopsis (vpe
and cvpe) were all in the Columbia background, and all the
Arabidopsis mutants have been identified using semiquantitative
RT-PCR (Supporting Information Fig. S2; Methods S2;
Notes S1). All the plants were grown in soil culture in a growth
chamber (model E7 ⁄ 2; Conviron, Winnipeg, MB, Canada) with
16 h light photoperiod (120 lmol quanta m)2 s)1) and 82%
relative humidity at 22�C for 2–4 wk.

BCECF-AM was obtained from Molecular Probes (Eugene,
OR, USA). PD98059 was purchased from Sigma-Aldrich
(Shanghai, China). All the chemical reagents used in the
Supporting Information are listed in Methods S1.

Isolation of Arabidopsis mesophyll protoplasts

The procedures were performed according to our previous study
(Zhang et al., 2009b). Small leaf strips (0.5–1 mm) in the
enzyme solution including cellulase R10 and macerozyme R10
(Yakult Honsha, Tokyo, Japan) were vacuum-infiltrated for
c. 30 min and then incubated in darkness for 3 h. After filtration
through a 75-lm nylon mesh, the crude protoplast filtrates were
sedimented by centrifugation for 3 min at 100 g. The purified
protoplasts were suspended in W5 solution (154 mM NaCl,
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125 mM CaCl2, 5 mM KCl, 5 mM glucose, 1.5 mM
Mes-KOH, pH 5.6) and counted in a hemotocytometer.

HS treatment

For the HS treatment of Arabidopsis seedlings, 2-wk-old Arabid-
opsis seedlings grown in plastic pots were incubated in a 42�C
pre-warmed circulating water bath for up to 2 h and then
transferred to growth chamber conditions for recovery at 24�C
(Moriwaki et al., 1999; Almoguera et al., 2002).

For the HS treatment of Arabidopsis leaves, detached Arabid-
opsis leaves from 4-wk-old Arabidopsis seedlings were placed on
plastic plates and incubated in a 42�C pre-warmed circulating
water bath for up to 2 h and then transferred to growth chamber
conditions for recovery at 24�C (Moriwaki et al., 1999;
Almoguera et al., 2002).

For the HS treatment of isolated protoplasts, newly prepared
protoplasts were challenged by a HS treatment in a 40�C
pre-warmed circulating water bath for 10 min and allowed to
recover at 24�C for different times (Zhang et al., 2009a).

The control samples were not incubated in a water bath for HS
treatment, and were maintained in growth chamber conditions at
24�C during the experimental period. Unless stated otherwise, all
the controls were the wild type (WT) because there was no differ-
ence between WT and mutants under untreated conditions. Plant
materials were maintained in the dark for the duration of HS treat-
ment and recovery after HS, and all operations were also performed
in the dark to minimize possible oxidative stress caused by light.

Measurement of growth conditions of Arabidopsis seedlings

At indicated times after HS treatment of Arabidopsis seedlings,
the leaves from WT, cvpe or vpe seedlings were collected. The
fresh weight was immediately measured, and the dry weight was
determined after the material had been oven-dried for 24 h at
105�C. Total leaf area was determined by LI-COR LI-3100C
leaf area meter (LI-COR, Lincoln, NE, USA). Each experiment
was repeated five times.

Confocal microscopy and in vivo imaging of organelles

All microscopic observations were performed using a Zeiss laser
confocal scanning microscope (LCSM; LSM510 ⁄ ConfoCor2,
Carl-Zeiss, Jena, Germany). Protoplasts were incubated with
BCECF (at a final concentration of 10 lM) for 30 min at room
temperature, then treated with HS and subjected to LCSM obser-
vation at indicated time of recovery period. The BCECF signal was
visualized with excitation at 488 nm and emission at 500–550 nm
using a band pass filter, and chloroplast autofluorescence (488 nm
excitation) was visualized at 650 nm with a long pass filter.

Protein extraction and caspase-3-like activity assay

Proteins were extracted from HS-treated detached Arabidopsis
leaves at the indicated time points after HS according to Zhang et al.
(2009b). For protein extraction, HS-treated detached leaves were

resuspended in lysis buffer (50 mM Tris-HCl, pH 8.0, 15 mM
NaCl, 1% Triton X-100, and 100 mg ml)1 phenylmethylsulfonyl
fluoride) and incubated on ice with gentle shaking using a level
shaker for 30 min. Samples were centrifuged for 5 min at 12 000 g
and 4�C, and the supernatants were transferred to new 1.5-ml tubes.
Protein concentrations were determined by the method of Bradford.
Caspase-3-like activity was measured by determining the cleavage of
the fluorogenic caspase-3 substrate Ac-DEVD-pNA (Beyotime,
China) using supernatant prepared from cell lysates. The extent of
Ac-DEVD-pNA cleavage was measured as the change in A405
resulting from the release of free fluorescent pNA.

VPE enzyme activity assay

Proteins were extracted from HS-treated detached Arabidopsis
leaves in 50 mM sodium acetate buffer (pH 5.5) containing 50
mM NaCl, 50 mM dithiothreitol, 1 mM EDTA and 1 mM
phenylmethylsulfonyl fluoride. A VPE-specific fluorescent sub-
strate, Ac-ESEN-MCA (Peptide Institute, Inc., Osaka, Japan) was
used to measure the activity of VPEs. The extracts were pre-
incubated with 100 lM Ac-ESEN-MCA in an acidic buffer (50 mM
sodium acetate, pH 5.5, 50 mM dithiothreitol and 0.1 mM
EDTA), and then the fluorescence intensity was measured using
the TECAN INFINITE M200 ELISA Reader every 5 min during
a 1 h reaction. The fluorescence was monitored under an excita-
tion wavelength of 380 nm and emission wavelength of 460 nm.

Treatment with MAPK cascade inhibitor

Before HS treatment, the detached Arabidopsis leaves were
pre-incubated in a solution containing a MAPK cascade inhibitor
PD98059 (dissolved in DMSO) for 60 min. The inhibitor
PD98059 was used at a final concentration of 150 lM to inhibit
the activation of MAPK cascade.

Total RNA extraction and quantitative reverse
transcript-PCR (qRT-PCR)

Total RNAs were extracted from detached Arabidopsis leaves at
indicated times after HS treatment according to manufacturer’s
instruction using TRI reagent (Sigma). Concentration of RNA
was determined by measuring OD at 260 nm. First-strand cDNA
was synthesized with the SuperScript II First-Strand Synthesis Sys-
tem for qRT-PCR (Invitrogen). qPCR amplification was carried
out using ACTIN as an endogenous control. SYBR Green probes
for each gene were used. The primers are listed in Table S2 and
the ATG numbers for the cited genes are listed in Table S3. PCR
was carried out using 50 ng of cDNA and SYBR PCR master mix
(TaKaRa, Dalian, China) following the manufacturer’s protocol.
Relative quantitation of each single gene expression was per-
formed using comparative threshold cycle method.

Western blot and MAPK activity assay

Proteins were extracted from detached Arabidopsis leaves at the
indicated time points after HS. Protein extracts were separated
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using SDS-PAGE and then Western blotted. For detection of
MAPK proteins, blots were probed with a 1 : 1000 dilution of
the polyclonal anti-AtMPK6 antibody (Sigma), anti-AtMPK4
antibody (Sigma) or anti-AtMPK3 antibody (Sigma). For detec-
tion of the phosphorylated proportion of MAPKs, blots were
probed with anti-ACTIVE MAP kinase polyclonal Ab (pTEpY;
Cell Signaling Technology, MA, USA), which recognizes acti-
vated MAPKs. Subsequently, blots were washed and incubated
with an anti-rabbit horseradish peroxidase secondary antibody.
Blots were stained with Ponceau-S and probed with an antibody
(Agrisera, Vännäs, Sweden) recognizing the large subunit of
Rubisco to confirm even loading and transfer.

Trypan blue staining

At indicated times during the recovery period after HS,
HS-treated detached Arabidopsis leaves were stained with a
lactophenol ⁄ trypan blue solution to observe the cell death.

Results

HS induces growth inhibition and cell death of Arabidopsis

Our results showed that HS treatment effectively inhibited the
growth of Arabidopsis seedlings (Fig. 1a). At 6 d post-treatment,

leaf area, fresh weight and dry weight all significantly decreased
(P < 0.05) in HS-treated WT seedlings relative to untreated con-
trol sample; subsequently, a significant difference of P < 0.01 in
seedling size was observed 12 d after HS treatment (Fig. 1b–d).
Trypan blue staining of detached WT Arabidopsis leaves revealed
cell death at 6 and 12 h after HS treatment (Fig. 1e).

cVPE is involved in HS-induced Arabidopsis death

In order to assess the impact of VPEs on the survival of Arabid-
opsis, an Arabidopsis mutant that lacks all four VPE genes
(VPE-null mutant, vpe) was used. Our results showed that in the
vpe mutant, the inhibition of seedling growth and cell death of
detached leaves under HS treatment were efficiently alleviated
(Fig. 1), indicating that VPE deficiency suppressed Arabidopsis
death induced by HS treatment. To further confirm how VPEs
participated in HS-induced Arabidopsis death, VPE protease
activity was detected during the recovery time after HS treatment
in detached Arabidopsis leaves. Results showed that VPE activity
was noticably increased during the 6–12 h recovery period after
HS treatment (Fig. 2a). At 6 h into the recovery period a signifi-
cant increase in VPE activity was detected, which was > 10·
(P < 0.05) the control level; then the activity leveled off after 9
and 12 h recovery (Fig. 2a). Given the complexity of the expres-
sion of different VPE genes in response to adverse stresses,
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Fig. 1 Growth conditions for Arabidopsis thaliana seedlings and trypan blue staining of Arabidopsis leaves under heat shock (HS) stress. (a) Phenotype of
wild-type (WT), cvpe and vpe Arabidopsis seedlings after 6 and 12 d recovery periods after 42�C HS treatment for 2 h. (b) Total leaf area of WT (open
bars), cvpe (closed bars) and vpe (striped bars) Arabidopsis seedlings after 6 and 12 d recovery after 42�C HS treatment for 2 h. (c) Fresh weight of WT,
cvpe and vpe Arabidopsis seedlings after 6 and 12 d recovery after 42�C HS treatment for 2 h. Bars are as in (b). (d) Dry weight of WT, cvpe and vpe

Arabidopsis seedlings after 6 and 12 d recovery after 42�C HS treatment for 2 h. Bars are as in (b). (e) Trypan blue staining of HS-treated detached leaves
of WT, cvpe and vpe after 6 and 12 h recovery after 42�C HS treatment for 2 h. Error bars are ± SD values for five replicates. Statistical analysis was
performed with Student’s paired t-test, asterisks indicate a significant difference from the control: *, P < 0.05; **, P < 0.01.
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changes in transcript proportions of the four types of Arabidopsis
VPE genes were investigated in HS-treated detached Arabidopsis
leaves. Results of qRT-PCR showed that only cVPE, among the
four VPEs, was significantly increased in transcript level after HS
treatment in detached Arabidopsis leaves (Fig. 2b). In the
HS-treated detached leaves, the transcript level of cVPE was
notably increased (P < 0.05) after 6–12 h recovery (Fig. 2b),
which was consistent with the change in VPE activity. Further-
more, in the detached leaves of cvpe-lacking mutant (cvpe), the
increase in VPE activity after HS treatment was inhibited
(Fig. S1), and HS-induced growth inhibition and cell death were
also alleviated (Figs 1, S10; Methods S6; Notes S5). The results
given above suggest that cVPE was involved in HS-induced
Arabidopsis death.

Lack of cVPE alleviates HS-induced vacuolar rupture and
PCD in Arabidopsis

It has been shown that disintegration of vacuolar membranes and
activation of caspase-3-like activity are the crucial events in plant
cell death (Jones, 2001; Zhang et al., 2009b). Vacuolar collapse
in HS-treated Arabidopsis protoplasts was investigated using the
fluorescent probe BCECF-AM was used, and diagnosis of vacuo-
lar membrane disintegration was exhibited by BCECF fluores-
cence. Imaging results demonstrated that protoplasts without HS
treatment accumulated BCECF only in the vacuole (Fig. 3a);
however, protoplasts that recovered 60 min after HS treatment
were separated into three staining types (Fig. 3b–d; Table S1):
BCECF-positive with intact vacuolar membrane (26.1 ± 5.6%
of the protoplasts); BCECF-negative with disintegrated vacuolar
membrane and intact plasma membrane (as shown by distribu-
tion of BCECF in the periphery regions inside the cells and the
DIC image; 57.2 ± 6.5%); and BCECF-negative with disinte-
grated vacuolar membrane and plasma membrane (as shown by
the DIC image; 17.3 ± 2.3%). The finding suggested that vacuo-
lar collapse occurred under HS treatment.However, protoplasts
from the cvpe had intact vacuolar and plasma membranes, and
accumulated BCECF in the vacuole at 60 min after HS treat-
ment (Fig. 3e,f). Moreover, pretreatment with VPE inhibitor
Ac-ESEN-CHO also inhibited HS-induced vacuolar collapse
(Fig. S3d; Methods S7; Notes S2).

Subsequently, the caspase-3-like activity in HS-treated
detached Arabidopsis leaves was measured using the caspase-3
fluorogenic substrate Ac-DEVD-pNA 15 h into the recovery
period after HS. The results show that the induction of
caspase-3-like activity was detected after 3 h recovery after HS
treatment, reached a peak at 9 h, and then decreased with the
increase of recovery time after HS (Fig. 4). The effect of cVPE
on HS-induced caspase-3-like activation was also investigated. In
HS-treated detached leaves of cvpe, the caspase-3-like activation
was effectively delayed and reduced after HS treatment (Fig. 4).
Moreover, caspase-3-like activation in detached Arabidopsis
leaves induced by HS treatment was also delayed and reduced by
pretreatment with VPE inhibitor Ac-ESEN-CHO (Fig. S3e;
Methods S7; Notes S2). These results indicate that HS induction
of vacuolar membrane disintegration and caspase-3-like activa-
tion required the involvement of cVPE.

HS-induced cVPE activation can be inhibited by MAPK
inhibitor PD98059

In order to investigate whether MAPK cascades affect the
HS-induced activation of Arabidopsis cVPE, the common inhib-
itor of MAPK cascade, PD98059, was used. First, the change in
transcript level of cVPE was detected using qRT-PCR. Results
showed a significant decrease (P > 0.05) in cVPE expression in
detached Arabidopsis leaves pretreated with PD98059 at 6 and
12 h after HS treatment, compared to that of the nonpretreated
samples (Fig. 5a). The change of VPE activity under HS stress
was also analysed. In PD98059-pretreated detached leaves,
the increase of VPE activity was effectively inhibited at 6 and
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thaliana leaves. (a) Changes of VPE protease activity during a 15 h
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substrate, Ac-ESEN-MCA, was used for the measurement of VPE activity.
Each data point is the mean ± SD of five replicates. Statistical analysis was
performed with Student’s paired t-test, asterisks indicate a significant
difference from the control at *, P < 0.05.
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12 h after HS treatment (P > 0.05) (Fig. 5b). The data indi-
cated that MAPK cascades were involved in HS-induced cVPE
activation.

MPK6 is activated under HS treatment

The results given above demonstrate that MAPK cascades might
be implicated in HS-induced activation of cVPE, but it remains
to be established which specific MAPKs mediate this process.
MPK3, MPK4 and MPK6 are reported to be involved in
Arabidopsis stress response and PCD. Therefore, the expression
and activation of MPK3, MPK4 and MPK6 proteins were

determined in detached Arabidopsis leaves under HS stress. First,
endogenous protein expression of MPK3, MPK4 or MPK6 was
immunoprecipitated with specific antibodies against MPK3,
MPK4 or MPK6. As shown in Fig. 6(a), specific antibodies for
MAPKs detected protein bands of 47, 43 and 43 kD correspond-
ing to MPK6, MPK3 and MPK4, respectively (Fig. 6a). Plant
MAPKs have high homology to mammalian ERK1 ⁄ 2 MAPKs,
and ERK1 ⁄ 2 antisera that recognize the dually phosphorylated
forms (pTEpY) of activated MAPKs can be used to monitor plant
MAPK activity (Li et al., 2007). Hence, endogenous kinase
activity of MPK3, MPK4 and MPK6 after HS treatment was
determined in detached Arabidopsis leaves using anti-ACTIVE
MAP kinase polyclonal Ab (pTEpY). As shown in Fig. 6(b), in
response to HS stress, while a transient increase in the MPK6
activity (47-kD band) was observed in HS-treated detached WT
leaves 15–60 min after HS treatment (Fig. 6b,c; P < 0.05), no
increase in kinase activity of MPK6 was observed in HS-treated
detached leaves of two T-DNA insertion mutants of MPK6
(mpk6-2 and mpk6-3) (Fig. 6b). This clearly suggests that the
47-kD band indicated the activation of MPK6. Our results also
showed that HS treatment was unable to transiently activate
MPK3 and MPK4 activity (43-kD band) compared to MPK6
(Fig. 6b). This indicates that HS-induced activation of MPK6
occurred by post-translational mechanisms.

Plant growth condition and caspase-3-like activation of
MPK6 mutants under HS treatment

In order to test the role of MPK6 in Arabidopsis HS phenotype,
two T-DNA insertion mutants of MPK6 (mpk6-2 and mpk6-3)
and the MPK6-overexpressing (MPK6-OE) Arabidopsis seedling
were used. In comparing growth, mpk6-2 and mpk6-3 seedlings
showed a lower decrease of fresh weight than that of WT at 6 and
12 d after HS treatment (Fig. 7a); however, the decrease of fresh
weight in MPK6-OE seedlings was much higher than that of
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WT 6 and 12 d after HS treatment (Fig. 7a). As a parallel experi-
ment, the caspase-3-like activity in detached leaves of mpk6-2,
mpk6-3 and MPK6-OE under HS stress was measured. As shown
in Fig. 7(b), a lower increase in caspase-3-like activity was
observed in detached leaves of mpk6-2 and mpk6-3 compared to
that of WT in response to HS treatment after 6, 9 and 12 h
recovery; whereas in the MPK6-OE mutant a much greater
increase was detected (Fig. 7b).

MPK6 is responsible for cVPE activation under HS treat-
ment

The data presented above indicate that MPK6 was activated by
HS treatment, and a lacking mutation in MPK6 (mpk6-2 and
mpk6-3) resulted in the alleviated cell death and enhanced HS
tolerance of Arabidopsis. Therefore, it would be interesting to
know whether MPK6 was implicated in HS-initiated cVPE
activation. Analysis by qRT-PCR revealed that, while cVPE
transcript level was upregulated in HS-treated detached leaves of
WT, there was no obvious change of cVPE mRNA in HS-treated
detached leaves of mpk6-2 and mpk6-3 6 and 12 h after HS
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treatment; instead, the expression level of cVPE gene in
HS-treated detached leaves of MPK6-OE was much higher than
that of WT (Fig. 8a). As a parallel experiment, the VPE activity
in detached leaves of mpk6-2, mpk6-3 and MPK6-OE under HS
stress was measured. As shown in Fig. 8(b), a substantial increase
in VPE activity was observed in detached leaves of WT in
response to HS treatment after 6 and 12 h recovery, whereas no
significant increase was observed in HS-treated detached leaves of
mpk6-2 and mpk6-3; further, in the MPK6-OE mutant a much
greater increase was detected (Fig. 8b). For further confirmation,
detached leaves of MPK3 and MPK4 mutants were treated with
HS. The data showed that HS-induced increase of VPE activity
was not obviously inhibited in detached leaves of MPK3-lacking
mutant (mpk3-1) and the MPK4-lacking mutant (mpk4-1)

compared with those of MPK6 mutants (Fig. 8c), suggesting that
it was MPK6, not MPK3 and MPK4, that was indispensable for
HS-induced cVPE activation.
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HS-induced caspase-1-like activation in Arabidopsis

VPEs have been reported to exhibit caspase-1-like activity in
tobacco and Arabidopsis (Hatsugai et al., 2004; Nakaune et al.,
2005), and our experiment showed that pretreatment with
caspase-1 inhibitor Ac-YVAD-CHO noticably alleviated the
HS-induced vacuolar collapse and caspase-3-like activation
(Fig. S3; Notes S2). Hence, we used caspase-1 fluorogenic sub-
strate Ac-YVAD-pNA to measure the change of caspase-1-like
(YVADase) activity in detached Arabidopsis leaves under HS stress
(Fig. S4; Methods S3). As shown in Fig. S4(a), caspase-1-like
activity was significantly increased in HS-treated detached WT
leaves after 6–15 h recovery after HS treatment (P < 0.05), and
the kinetics of caspase-1-like activity was similar to the change of
VPE activity (Fig. 2a). In addition, no change could be detected in
HS-treated detached leaves of cvpe (Fig. S4a). Furthermore,
experiments with detached leaves of mpk6-2, mpk6-3 and
MPK6-OE mutants showed that MPK6 activity was required for
the HS-induced upregulation of caspase-1-like activity (Fig. S4b).

Discussion

This study is an attempt to understand the possible molecular
mechanisms underlying the cellular process of VPE-mediated Ara-
bidopsis PCD induced by HS treatment. The results shown in this
work provide evidence for the cellular signaling cascade of the acti-
vation and function of VPEs in Arabidopsis response to HS stress.

High temperature is one of the limiting factors for plants growth
(Zuppini et al., 2006; Zhang et al., 2009a), and recent studies have
reported that HS challenge can cause several apoptosis-like charac-
ters and trigger PCD in plant cells (Vacca et al., 2006; Zuppini
et al., 2006; Zhang et al., 2009a). In both animal and plant PCD,
the caspase-like activation is believed to be the key and final step,
and the activation of caspase-3-like protease, which is considered as
the major executioner of animal PCD, has been detected under
UV-C and aluminum stresses (Zhang et al., 2009b; Li & Xing,
2011). The present study observed the caspase-3-like activation in
HS-induced Arabidopsis death, indicating the vital role of
caspase-3-like protease in the Arabidopsis HS response (Fig. 4).

The vacuole may be involved in the process of plant develop-
ment and stress response (Hatsugai et al., 2004), and ultrastruc-
tural analysis has shown that the vacuole is the organelle site
most sensitive to HS treatment (Jones, 2001). In plants, a
vacuole-localized cysteine protease called VPE has been identified
and experimental evidence has demonstrated that VPEs exhibit
caspase-1-like activity and participate in development, senescence,
hypersensitive cell death and hormone signaling (Kinoshita et al.,
1999; Hatsugai et al., 2004, 2006; Kuroyanagi et al., 2005).
Recent work has further reported that a cellular suicide strategy
mediated by the vacuole and VPEs can regulate the development
and cell death programmes in plants (Hatsugai et al., 2004). In
our work, it was found that HS caused cVPE activation and
vacuolar disruption (Figs 2, 3), suggesting the possible involvement
of cVPE-mediated vacuolar system in HS-induced Arabidopsis PCD.

In animal apoptosis, there are several kinds of caspases with
different functions. Compared with caspase 3, which acts as the

executioner of PCD to induce DNA fragmentation and chroma-
tin condensation, several other caspases (such as caspase 8 and
caspase 1) can function as mediators activating downstream sig-
naling cascades of PCD (Fan et al., 2005). Our data showed that
cVPE might exhibit caspase-1-like activity (Fig. S4) and promote
vacuolar disruption and caspase-3-like activation in Arabidopsis
PCD induced by HS (Figs 1, 3, 4, S3). The vacuole contains
many hydrolases and proteases which can lyse proteins and cellu-
lar compartments to regulate the process of plant senescence and
death (Hatsugai et al., 2004; Muntz, 2007); notably, in the vacu-
ole-mediated PCD signaling pathway, VPEs function as the key
molecules through processing these hydrolases and proteases and
disrupting the vacuole (Kuroyanagi et al., 2002; Hatsugai et al.,
2004). Hence, it was supposed that cVPE or other vacuolar
enzymes released into the cytosol from the vacuole through
cVPE-mediated vacuolar disruption, functioned in the activa-
tion of a downstream caspase-like pathway in HS-induced
Arabidopsis PCD.

In the vacuole-mediated PCD pathway, the upstream signaling
cascades of VPE activation are important components but remain
unclear. MAPK cascades can be activated by various stimuli and
play central roles in the process whereby extracellular stimuli are
transduced into intracellular responses (Widmann et al., 1999;
Davis, 2000; Kyriakis & Avruch, 2001; Tena et al., 2001; Zhang
& Klessig, 2001; Asai et al., 2002; Nakagami et al., 2005).
Besides their protective roles, MAPK cascades also can function
as negative regulators in plant stress response. For example,
MKK7 is shown to negatively regulate polar auxin transport and
a mutation in MKK9 results in the enhanced stress tolerance and
alleviated senescence in plants (Dai et al., 2006; Alzwiya &
Morris, 2007; Zhou et al., 2009). Furthermore, Li et al. (2007)
report that a 56-KD MAPK protein mediates self-incompatibility-
induced PCD by activating caspase-like activity. Our experi-
ment demonstrated that MAPK cascades also participated in the
activation of cVPE in HS-induced PCD (Fig. 5). Among various
kinds of MAPK proteins, MPK6 is a well-established signaling
protein in Arabidopsis, which can be activated by various stimuli,
including low temperature, wounding, heavy metals, drought,
oxidative stress and plant hormones (Morris et al., 1997; Teige
et al., 2004; Xing et al., 2008, 2009; Wang et al., 2010). In
HS-treated Arabidopsis, the activation of MPK6 was proved to
be responsible for the upregulation of cVPE activity and the
subsequent execution of PCD (Figs 6–8).

ROS and Ca2+, as important signal messengers in plant cells,
can function in the upstream activation of MAPK cascade under
various stimuli (Fluhr & Bowler, 2000; Romeis et al., 2001;
Xing et al., 2008; Wang et al., 2010). Under HS stress, ROS
production and cytoplasmic calcium concentration ([Ca2+]cyt)
increase are early events (Gong et al., 1998; Zhang et al., 2009a),
and the Ca2+-CaM3 cascade can regulate plant HS response
through activating downstream signal transduction (Gong et al.,
1997; Xuan et al., 2010). Our data presented a cellular signaling
cascade, composed of ROS production, [Ca2+]cyt increase and the
upregulation of CaM3 transcript level, which functioned in the
upstream activation of MPK6 in response to HS (Figs S5–S9,
S11, S12; Methods S4, S5; Notes S3, S4, S6, S7).
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In conclusion, our data show that MPK6-mediated activation
of Arabidopsis cVPE modulated HS-induced Arabidopsis PCD.
According to our experimental results, a potential cascade of
cellular events during HS-induced PCD occurred (Fig. 9): HS
treatment caused ROS production and increase of [Ca2+]cyt, and
the Ca2+-CaM3 cascade, in turn, activated MPK6 protein; then
the activated MPK6 protein upregulated the transcript level of
cVPE, resulting in the accumulation of inactive VPE precursors
in the vacuole which can self-process into activated VPEs; subse-
quently, activated VPEs processed vacuolar hydrolases and prote-
ases and disrupted the vacuole to promote the caspase-3-like
activation. These results suggested a possible molecular mecha-
nism underlying the process of HS-induced PCD, and provided
a new insight into the cellular signaling cascade of plant VPEs.
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