532 nm 和 808 nm 激光及其线偏振激光辐照人正常 膀胱与膀胱癌组织光学特性*

魏华江^{1,2)} 邢 达^{1)**} 巫国勇³⁾ 谷怀民¹⁾ 金 鹰¹⁾

(¹⁾华南师范大学激光生命科学研究所,广州 510631;²⁾广东药学院物理学教研室,广州 510224; ³⁾中山医科大学第一附属医院心胸外科,广州 510089)

摘要 采用双积分球系统和光辐射测量技术的基本原理,以及运用生物组织的光学模型,研究了 532 nm 和 808 nm 激光及其线偏振激光辐照人正常膀胱和膀胱癌组织的光学特性.结果表明:膀胱癌组织对同一波长的激光或其线偏振激光的衰减明显较正常膀胱组织的要大,膀胱癌组织对 532 nm 和 808 nm 激光的衰减明显较正常膀胱组织的要大,膀胱癌组织对 532 nm 和 808 nm 激光及其线偏振激光的衰减明显较正常膀胱组织的要大. 正常膀胱或膀胱癌组织对同一波长的激光及其线偏振激光的折射率均没有明显的差异,膀胱癌组织对 532 nm 和 808 nm激光的折射率比正常膀胱的明显要大.Kubelkar Munk 二流模型下,两种组织对同一波长的激光或其线偏振激光的光学特性均有显著性差异 (P < 0.01).同一组织对不同波长的激光及其线偏振激光的光学特性也有显 著性差异 (P < 0.01),正常膀胱组织对同一波长的激光及其线偏振激光的光学性有明显差异,而膀胱癌组织对 同一波长的激光及其线偏振激光的光学特性则没有明显差异.膀胱癌组织对 532 nm 和 808 nm 激光及其线偏振激光的光学特性也有显

关键词 人正常膀胱和膀胱癌组织,光学特性,532 nm 和 808 nm 激光,双积分球系统,线偏振激光 学科分类号 R318.51

研究新的、有效的、有助于早期发现疾病的诊 断技术和治疗方法已成为生物医学工程领域的研究 重点. 光子与生物组织相互作用后,光子将携带与 生物组织成分结构有关的信息^[1].研究表明,线 偏振光对生物组织的穿透深度比圆偏振光要大,而 用模拟生物组织的实验结果却与上述结果相反^[2]. 这是生物组织成分的排列结构与模拟生物组织的成 分和排列结构不同,而使偏振光的偏振信息发生改 变所致,从组织光学的角度来看,生物组织可看作 是一种光学混浊介质,生物体的生理特性变化或癌 变等组织特性的变化都导致生物组织的光学特性参 数的改变.从可见光到红外光,对组织的穿透性随 波长的增大而增加,因此,808 nm 激光对生物组 织应有很好的穿透性. 在光动力治疗 (PDT) 中, 对生物组织具有较好穿透性的激光能应用于生物体 深部病灶的治疗.水对 532 nm 激光的吸收很少, 因此,532 nm 激光常被用于生物医学上的偏振成 像等.此外,采用线偏振光入射薄的生物组织可以 减少光轴上透射光中的散射成分^[3],提高测量准 直透射光的精确度且可探讨其对组织的光学特性. 本实验采用双积分球系统和光辐射测量技术及组织 光学模型,测量了人正常膀胱和膀胱癌组织对 532 nm和 808 nm 激光及其线偏振激光的光学特 性,并对实验结果进行分析与讨论.

1 材料与方法

1.1 样品的制备

用手术切除的人新鲜离体正常膀胱和膀胱癌活 组织、样品采取后立即用生理盐水保存并置冰箱速 冻冷藏,实验时才取出,全过程即从样品切除到实 验完成在4h内. 制备方法是用生理盐水冲洗干净 样品表面的血液等,剥去样品外侧的脂肪组织,将 样品均切为 18.5 mm ×18.5 mm 的面积,正常膀 胱组织的厚度为(1.32 ±0.05)mm, 膀胱癌组织 的厚度为 (2.10 ±0.08) mm. 样品两个表面不作 切片以保持组织的完整性(对薄的组织样品),因 为经过切片的组织切口面积大、细胞质液渗漏现象 较严重,组织表面含水分增多,导致所测结果的改 变. 自行设计和加工的样品夹是用不透光的黑色薄 片,上下两片各钻1个半径为 $R_a = 6 \text{ mm}$ 的圆孔, 样品夹的外半径为 Rb = 12 mm,如图 1 所示. 将 样品平展于样品夹并夹紧,然后放置于双积分球光 学系统的样品池用于测量,实验过程用液氮冷冻板 作辅助保持组织活性.

^{*}国家重大基础研究前期研究专项(2002CCC00400)和广东省 自然科学基金团队项目(015012).

^{**}通讯联系人.

Tel: 020-85210089, E-mail: xingda @hsut.scnu.edu.cn 收稿日期: 2002-09-16, 接受日期: 2002-11-01

Fig. 1 View of the section of the tissue sample holder l: tissue sample; 2: tissue sample holder; 3: $R_a = 6 \text{ mm}$; 4: $R_b = 12 \text{ mm}$.

1.2 光学特性的测量与实验系统

1.2.1 漫反射和漫透射的测量:双积分球系统如 图 2 所示,实验室温度为 27 . 系统由美国产的 全固态连续钛宝石激光系统(899-05 型)、光衰减 片、反射镜、光栏、、光栏、、25倍扩束器、偏振

Fig. 2 Experimental setup of a double-integrating-spheres system for measuring the optical properties of biological tissue *1*: laser; *2*: attenuator; *3*: attenuator; *4*: mirror; *5*: aperture; *6*: beam expander; *7*: polarizer; *8*: aperture; *9*: intergrating sphere; *10*: sample; *11*: optical trap; *12*: intergrating sphere; *13*: optical trap; *14*: detector system; *15*: detector system; *16*: baffle; *17*: baffle.

片、中国科学院安徽光学精密机械研究所产的光学 积分球探测器以及光陷阱各两个组成,两个积分球 的结构完全一样, 球腔内径为 50 mm, 样品窗及 光入射窗或出光窗的直径都为 12 mm,积分球 用于探测样品的漫反射光,积分球 用于探测样品 的漫透射光. 调节光路使激光的光束通过衰减片作 适当的衰减,再由反射镜反射通过孔径为 2 mm 的 光栏 后, 经 25 倍扩束镜使激光成为准直的宽光 束,再通过孔径为6mm的光栏 垂直进入入射窗 和样品窗.积分球 只测量组织的漫反射光,不包 含镜面反射光. 样品后面的光陷阱完全消除透过样 品透射光,积分球 后面光陷阱完全消除出射光, 提高了实验系统的精度. 积分球 只测量组织的漫 透射光,不包含准直透射光.在光栏 前加偏振片 使激光成为线偏振激光及不加偏振片两种方式,用 于实验而作为实验结果比较.实验测量样品内壁与 外壁对 532 nm 和 808 nm 激光及其线偏振激光的 漫反射及漫透射.

漫反射率和漫透射率的测量采用的方法见文献 [4],总透射量的测量是把积分球 的光路调节到 如图 3 所示,将入射光的方向与光轴调成 3°,积分 球 的出光孔处放置标准板.激光对样品两个侧面 分别辐照一次.

Fig. 3 Measurement method of specular reflectance and collimated transmittance of biological tissue

I: intergrating sphere ; 2: sample ; 3: baffle ; 4: baffle ; 5: sample; 6: intergrating sphere ; 7: standard reference plate. = 3° .

总衰减系数的测量方法^[5]是在图 3 的实验装置 及方法的基础上,将入射光的方向与光轴成 0.17° 入射到组织,在积分球 的进光孔前放置孔径为 1 mm的光栏,调节光路使样品的镜面反射光反射 回积分球 内,积分球 的出光孔处放置标准板, 其他与图 2 相同.

1.2.3 生物组织折射率的测量:采用光的电磁理 论来分析,菲涅耳公式可从理论上较好地解释许多 光学现象,将菲涅耳公式应用于生物组织中,可获 得生物组织的折射率^[6].测量组织折射率的积分 球系统如图 3 所示,其他与图 2 相同.入射光与光 轴成 3 $^{\circ}$ 入射到组织,组织表面的镜面反射率的计 算见文献 [6].由表 1、表 2 的实验数据和已知空 气的折射率 n_1 ,可得出组织的折射率 n_2 .

1.3 Kubelka-Munk 二流理论

Kubelka-Munk 二流理论是适用于薄平板状的 无源散射介质的一种近似解法. 其最大的优点是其 散射系数 S_{KM} 和吸收系数 A_{KM} 可直接用实验测出 的反射系数 R、透射系数 T和样品厚度 d表示^[7]. 当光入射到厚度为 X (cm) 的平行层混浊介质时, 认为它的散射光只有两部分即前向散射通量 i (x) 和后向散射通量 j (x),而总的光强 I (x) 等于 i (x)和 j (x)之和^[8],样品的总衰减系数和有 效的衰减系数分别为 E_t 、 E_{eff} ^[9].如果将人正常膀 胱和膀胱癌组织看作平行的混浊介质,其厚度为 X.设:组织对激光及其线偏振激光的吸收系数、 散射系数、总衰减系数、有效衰减系数分别为 A_{KM} 、 S_{KM} 、 E_t 、 E_{eff} 和 A_{KM}^* 、 S_{KM}^* 、 E_t^* 、 E_{eff}^* .

1.4 统计学处理方法

实验数据以均数和标准差 $(x \pm s)$ 表示,利用统计软件 SPSS10 for windows 作统计处理,采用 t 检验.

2 结果与分析

实验分别以激光及其线偏振激光对样品各作同 样条件的 10 次测量,每次测量均改变激光对样品 辐照的位置,所测数据有很好的重复性并用 EXCEL for windows作处理.

2.1 组织的反射参数、透射参数及总衰减系系数

532 nm 和 808 nm 激光及其线偏振激光辐照组 织内壁与外壁的漫反射率、漫透射率、镜面反射 率、准直透射率和总衰减系数均没有显著性差异 (*P*>0.05),因此,对内、外壁所测结果在同一波 长下作平均值处理.表1和表2列出测量结果的均 数及标准差, 是波长.

 Table 1
 Diffuse reflectance, specular reflectance, diffuse transmittance, collimated transmittance, total attenuation coefficient

 of human normal bladder and human bladder cancer tissue at laser irradiation

/ nm	Tissue	Diffuse	Specular	Diffuse	Collimated	Total attenuation	
		reflectance	reflectance	transmittance	transmittance	coefficient/ cm ⁻¹	
532	normal bladder	0.357 ±0.017	0.024 ±0.002	0.051 ±0.003	0.022 ±0.002	45.00 ±0.12	
532	bladder cancer	0.136 ±0.007	0.036 ±0.003	$1.8 \times 10^{-5} \pm 0.01 \times 10^{-5}$	$3.1 \times 10^{-5} \pm 0.02 \times 10^{-3}$	$3.1 \times 10^2 \pm 0.02 \times 10^2$	
808	normal bladder	0.316 ±0.016	0.022 ±0.002	0.250 ±0.011	0.072 ±0.004	13.00 ±0.03	
808	bladder cancer	0.311 ±0.014	0.033 ±0.003	0.082 ±0.005	8.6 $\times 10^{-5} \pm 0.05 \times 10^{-3}$	$1.1 \times 10^2 \pm 0.01 \times 10^2$	

 Table 2
 Diffuse reflectance, specular reflectance, diffuse transmittance, collimated transmittance, total attenuation coefficient

 of human normal bladder and human bladder cancer tissue at linearly polarized laser irradiation

/ nm	Tissue	Diffuse reflectance	Specular reflectance	Diffuse transmittance	Collimated transmittance	Total attenuation coefficient/ cm $^{-1}$	
532	normal bladder	0.355 ±0.015	0.027 ±0.001	0.047 ±0.003	0.023 ±0.002	42.00 ±0.11	
532	bladder cancer	0.138 ±0.006	0.037 ±0.003	$3.9 \times 10^{-5} \pm 0.02 \times 10^{-5}$	$3.2 \times 10^{-5} \pm 0.02 \times 10^{-3}$	$3.0 \times 10^2 \pm 0.02 \times 10^2$	
808	normal bladder	0.364 ±0.015	0.024 ±0.001	0.271 ±0.012	0.095 ±0.004	10.00 ±0.03	
808	bladder cancer	0.310 ±0.014	0.034 ±0.003	0.085 ±0.005	9.7 $\times 10^{-5} \pm 0.05 \times 10^{-3}$	99.00 ±0.37	

结果表明:正常膀胱组织对 532 nm 激光及其 线偏振激光的总衰减系数没有显著性差异(P> 0.05),而对 808 nm 激光及其线偏振激光的总衰 减系数则有明显不同,膀胱癌组织也一样.正常膀 胱组织对 532 nm、808 nm 激光及其线偏振激光的 总衰减系数有显著性差异(P<0.01),膀胱癌组 织也一样.表明两种组织对不同波长的激光衰减均 有明显的差异,两种组织对不同波长的激光衰减均 有明显的差异,两种组织对808 nm 激光的衰减均 远小于 532 nm 激光,其对相应线偏振激光的衰减 也一样.每一种波长的激光与其线偏振激光相比 较,两种组织对线偏振激光的衰减明显要小,这反 映了组织结构的特征.

2.2 人正常膀胱和膀胱癌组织的折射率

利用表 1 和表 2 的数据以及文献 [6],可计算 出组织对 532 nm 和 808 nm 激光及其线偏振激光 的折射率.分别以 *n* 和 *n*^{*}表示组织对激光和线偏 振激光的折射率 (表 3).

Table 3 Refractive index of human normal bladder and human bladder cancer tissue at laser and linearly polarized laser irradiation

Intaulation							
/ nm	Tissue	n	<i>n</i> *				
532	normal bladder	1.37 ±0.01	1.39 ±0.01				
532	bladder cancer	1.48 ±0.02	1.48 ±0.02				
808	normal bladder	1.35 ±0.01	1.37 ±0.01				
808	bladder cancer	1.44 ±0.02	1.45 ±0.02				

结果表明:每一种组织对每一种波长的激光及 其线偏振激光的折射率均没有显著性差异(*P*> 0.05).同一组织对不同波长的激光或其线偏振激 光的折射率有明显差异,膀胱癌组织对不同波长激 光的折射率比正常膀胱的明显要大. Kubelka-Munk 二流模型下组织的光学特性
 3.1 组织的吸收系数和散射系数以及总衰减系数和有效的衰减系数: Kubelka-Munk 二流模型下, 组织对 532 nm 和 808 nm 激光及其线偏振激光的吸收系数、散射系数、总衰减系数、有效衰减系数 列于表 4.

Table 4 Absorption coefficients, scattering coefficients, total attenuation coefficients, effective attenuation coefficients of human normal bladder and human bladder cancer tissue in Kubelka Munk two-flux model at laser and linearly polarized laser irradiation

/ nm	Tissue	$A_{\rm KM}/{\rm cm}^{-1}$	$S_{\rm KM}/{\rm cm^{-1}}$	$E_{\rm t}/{\rm cm}^{-1}$	$E_{\rm eff}$ / cm ⁻¹	$A _{\rm KM}^{*}/{\rm cm}^{-1}$	$S_{\rm KM}^{*}$ cm $^{-1}$	E_{t}^{*}/cm^{-1}	$E_{\rm eff}^{*}/{\rm cm}^{-1}$
532	normal bladder	10.2 ±0.06	17.6 ±0.09	27.8 ±0.14	21.5 ±0.11	10.6 ±0.07	17.9 ±0.09	28.5 ±0.15	22.2 ±0.12
532	bladder cancer	63.0 ±0.36	22.9 ±0.12	85.9 ±0.48	82.8 ±0.43	58.1 ±0.29	21.6 ±0.11	79.7 ±0.41	76.7 ±0.37
808	normal bladder	5.29 ±0.03	6.30 ±0.04	11.6 ±0.07	9.73 ±0.09	4.42 ±0.02	6.70 ±0.03	11.1 ±0.07	8.88 ±0.04
808	bladder cancer	9.63 ±0.04	12.5 ±0.06	22.1 ±0.12	18.3 ±0.09	9.52 ±0.04	12.2 ±0.06	21.7 ±0.10	18.0 ±0.09

从表 4 可见,不同组织对同一波长的激光或其 线偏振激光的吸收系数、散射系数、总衰减系数、 有效衰减系数均有显著性差异(*P* < 0.01).同一 组织对不同波长的激光及其线偏振激光的吸收系 数、散射系数、总衰减系数、有效的衰减系数也有 显著性差异(*P* < 0.01),同一组织对同一波长的 激光及其线偏振激光的吸收系数、散射系数、总衰 减系数、有效的衰减系数没有显著性差异(*P*>0.05).

2.3.2 正常膀胱和膀胱癌组织中的一维光强分布: 在 Kubelka-Munk 二流模型下,人正常膀胱和膀胱 癌组织对532 nm和808 nm激光及其线偏振激光

Fig. 4 The i (x) , j (x) , I (x) of human normal bladder tissue in Kubelka Munk two-flux model are changed with tissue thickness at 532 nm and 808 nm laser and their linearly polarized laser irradiation

Where *i* (*x*) represents forward scattered photon fluxes, *j* (*x*) represents backward scattered photon fluxes, *I* (*x*) represents total scattered photon fluxes. The *x* represents the thickness of human normal bladder tissue, where x = 0.132 cm. (a) *A* (*x*) and *C* (*x*) represent the forward scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm laser irradiation respectively. (b) *E* (*x*) and *G* (*x*) represent the forward scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (c) *K* (*x*) and *M* (*x*) represent the backward scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (d) *O* (*x*) and *Q* (*x*) represent the backward scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (e) *S* (*x*) and *U* (*x*) represent the total scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (f) *W* (*x*) and *Y* (*x*) represent the total scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (f) *W* (*x*) and *Y* (*x*) represent the total scattered photon fluxes of human normal bladder tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively.

的前向散射光通量为 i(x), 和反向散射通量为 i(x)以及总散射光通量为I(x),在组织中沿厚 度方向的一维光强分布可用表 1 和表 2 的实验数据 和 Mathcad2001 for windows 而获得,如图 4 和图 5 所示.

The i(y), j(y), I(y) of human bladder cancer tissue in Kubelka Munk two-flux model are changed with tissue Fig. 5 thickness y at 532 nm and 808 nm laser and their linearly polarized laser irradiation

Where i(y) represents forward scattered photon fluxes, j(y) represents backward scattered photon fluxes, I(y) represents total scattered photon fluxes. The y represents the thickness of human bladder cancer tissue, where y = 0.210 cm. (a) B(y) and D(y) represent the forward scattered photon fluxes of human bladder cancer tissue at 532 nm and 808 nm laser irradiation respectively. (b) F(y) and H(y) represent the forward scattered photon fluxes of human bladder cancer tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (c) L(y) and N(y)represent the backward scattered photon fluxes of human bladder cancer tissue at 532 nm and 808 nm laser irradiation respectively. (d) P (y) and R (y) represent the backward scattered photon fluxes of human bladder cancer tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively. (e) T (y) and V (y) represent the total scattered photon fluxes of human bladder cancer tissue at 532 nm and 808 nm laser irradiation respectively. (f) X (y) and Z (y) represent the total scattered photon fluxes of human bladder cancer tissue at 532 nm and 808 nm linearly polarized laser irradiation respectively.

论 3 讨

从实验结果可见,正常膀胱组织对 532 nm 激 光及其线偏振激光的衰减明显比 808 nm 激光及其 线偏振激光的要大. 正常膀胱组织对 532 nm 激光 的衰减较其线偏振激光的要略为大一些,而对 808 nm激光的衰减较其线偏振激光的明显要大, 膀胱癌组织对 532 nm 和 808 nm 激光的衰减均较 其线偏振激光的要略大一些. 这是由于线偏振光通 过薄的生物组织时,在光轴上所产生的散射光比非 偏振光入射要少^[3],且 808 nm 激光对组织的穿透 性较 532 nm 激光的明显要强. 但在同一波长的激 光辐照下、膀胱癌组织对激光的衰减明显较正常膀 胱组织的要大,对线偏振激光也一样. 膀胱癌组织 对 532 nm 和 808 nm 激光及其线偏振激光的衰减 明显较正常膀胱组织的要大,这反映了组织结构的 特征、因此、检测膀胱组织的衰减系数、可为临床

诊断提供一种新的诊断病变组织的手段。正常膀胱 或膀胱癌组织对同一波长的激光及其线偏振激光的 折射率均没有明显的差异,这是由于组织的折射率 是由菲涅耳公式和组织的镜面反射率计算出来的, 而没有利用准直透射率。若利用准直透射率及菲涅 耳公式计算折射率则要准确地测量组织的厚度,而 要准确测量组织厚度是困难的。因此,折射率测量 精确度的提高对入射激光是否线偏振激光没有显著 性差异 (P>0.05). 同一组织对不同波长的激光 或其线偏振激光的折射率有明显差异,膀胱癌组织 对不同波长激光的折射率比正常膀胱的明显要大. 此外,测量组织的折射率会受样品不均匀性的影 响,因此,实验采用准直宽光束(光斑直径为 6 mm) 辐照组织, 光束与样品的接触面积较大, 测出的折射率相当于对这光束接触样品面积的平均 值,其相对用较窄光束辐照的精确度要高.但是折 射率受到组织含水量的影响很大^[10,11].因此,组 织的含水量是直接影响测量结果的一个重要因素.

在 Kubelka-Munk 二流模型下, 两种组织对同 一波长的激光或其线偏振激光的吸收系数、散射系 数、总衰减系数、有效衰减系数均有显著性差异 (P < 0.01). 同一组织对不同波长的激光及其线偏 振激光的吸收系数、散射系数、总衰减系数、有效 衰减系数也有显著性差异 (P < 0.01), 正常膀胱 组织对同一波长的激光及其线偏振激光的吸收系 数、散射系数、总衰减系数、有效衰减系数有明显 差异,而膀胱癌组织对同一波长的激光及其线偏振 激光的吸收系数、散射系数、总衰减系数、有效衰 减系数则没有明显差异. 其原因是: a. 人正常膀 胱组织比较薄而人膀胱癌组织比较厚; b. Kubelka-Munk 二流理论的一个主要假设是辐射度完全由漫 射得到的^[12]. 当线偏振光通过薄的生物组织时, 在光轴上所产生的散射光比非偏振光入射要少^[3]. 导致组织的散射光通量及光学特性的变化。由于人 膀胱癌组织的厚度比较厚,因此、其光学特性参数 对是否是线偏振激光入射没有明显的差异. 膀胱癌 组织对 532 nm 和 808 nm 激光及其线偏振激光的 i(x)、j(x)、I(x)的衰减均较正常膀胱组织 的明显要快得多, 且 i(x) 均明显较 j(x) 强, 两种组织对 532 nm 激光的 j (x) 明显较 808 nm 激光的要强,正常膀胱和膀胱癌组织对 532 nm 激 光的 i(x)、j(x)、I(x) 与是否是线偏振激光 入射均没有明显差异,正常膀胱组织对 808 nm 激 光及其线偏振激光的i(x)、j(x)、I(x) 有明 显差异,而膀胱癌组织对 808 nm 激光及其线偏振 激光的 i(x)、j(x)、I(x) 没有明显差异.因 此, 检测膀胱组织对 532 nm 和 808 nm 激光及其 线偏振激光i(x)、j(x)、I(x)的衰减,也可

为临床诊断提供一种新的诊断病变组织的手段.

参考文献

- Ghosh N, Mohanty S K, Majumder S K. Measurement of optical transport properties of normal and malignant human breast tissue. Appl Opt, 2001, 40 (1): 176~184
- 2 Sankaran V, Everett M J, Maitland D J, et al. Comparison of polarized-light propagation in biological tissue and phantoms. Optics Letters, 1999, 24 (15): 1044 ~ 1046
- 3 Qu J N, MacAulay C, Lam S, et al. Optical properties of normal and carcinomatous bronchial tissue. Appl Opt, 1994, 33 (31): 7397 ~ 7405
- 4 魏华江,李晓原,巫国勇,等. Kubelkar Munk 模型下人血管对 Her Ne 激光的散射与吸收特性.中国激光,2001,28 (6):573 ~576
 Wei HJ, Li X Y, Wu G Y, et al. Chin J Laser, 2001,28 (6):
- 573~576
 5 Flock S T, Wilson B C, Patterson M S. Total attenuation
- coefficients and scattering phase functions of tissues and phantom materials at 633 nm. Med Phys, 1987, **14** (5): 835 ~ 841
- 6 张镇西,蒋大宗,张志麟,等. 生物组织光传输特性的研究. 中 国生物医学工程学报,1993,12 (3):197~202 Zhang Z X, Jiang D Z, Zhang Z L, *et al*. Chin J Biomedical Engineering, 1993, 12 (3):197~202
- 7 Vogel A, Dlugos C, Nuffer R, et al. Optical properties of human sclera, and their consequences for transscleral laser applications. Lasers Surg Med, 1991, 11: 331 ~ 340
- 8 Graaff R, Aarnoudse J G, de Mul F F M. Light propagation parameters for anisotropically scattering media based on a rigorous solution of the transport equation. Appl Opt, 1989, 28 (12): 2273 ~ 2279
- 9 Seiyama A, Chen S S, Kosaka H, et al. Microspectroscopic measurement of the optical properties of rat liver in the visible region. J Micro, 1994, 175 (1): 84~89
- 10 Bolin F P, Preuss L E, Taylor R C, et al. Refractive index of some manmalian tissues using a fiber optic cladding method. Appl Opt, 1989, 28 (12): 2297 ~ 2304
- 11 Li H, Lu Z. Measurement and accuracy analysis of refractive index using spectra reflectivity closes to the total internal reflection. Broc SPIE, 1998, 3548: 119 ~ 124
- 12 van der Putten W J M, van Gemert M J C. A modelling approach to the detection of subcutaneous tumours by haematoporphyrim derivative fluorescence. Phys Med Biol, 1983, 28 (6): 639 ~ 645

Optical Properties of Human Normal Bladder and Bladder Cancer Tissue at 532 nm and 808 nm Laser and Their Linearly Polarized Laser Irradiation In vitro *

WEI Hua-Jiang^{1,2)}, XIN G Da^{1} ^{**}, WU Guo-Yong³⁾, GU Huai-Min¹⁾, J IN Ying¹⁾

(¹⁾ Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China;

²⁾ Physics Department of Guangdong College of Pharmacy, Guangzhou 510224, China;

³⁾ First Affiliated Hospital of Sun Yat-sen University of Medical Sciences, Guangzhou 510080, China)

Abstract A double-integrating-spheres system, basic principle of measuring technology of ray radiation, optical model of biological tissues were used for the study. Optical properties of human normal bladder and bladder cancer tissues at 532 nm and 808 nm laser and their linearly polarized laser irradiation were studied. The results of measurement showed that attenuation of light intensities in human bladder cancer tissue were obviously bigger than one of human normal bladder tissue at a certain wavelength of laser or the linearly polarized laser irradiation. Attenuation of light intensities in human bladder cancer tissue at 532 nm and 808 nm laser was slightly bigger than one of human normal bladder tissue at the linearly polarized laser irradiation. Attenuation of light intensities in human bladder cancer tissue at 532 nm and 808 nm laser and their linearly polarized laser irradiation was obviously bigger than one of human normal bladder tissue at 532 nm and 808 nm laser and their linearly polarized laser irradiation. Refractive index of human normal bladder or human bladder cancer tissue at a certain wavelength of laser and its linearly polarized laser irradiation had not obvious distinction. Refractive index of human normal bladder tissue was obviously bigger than one of human normal bladder tissue at 532 nm and 808 nm laser. Optical properties of all of human normal bladder tissue and bladder cancer tissues in Kubelkar Munk two-flux model at a certain wavelength of laser or its linearly polarized laser irradiation had prominent distinction (P < 0.01). Optical properties of a certain of tissue at 532 nm and 808 nm laser and their linearly polarized laser irradiation had either prominent distinction (P < 0.01). Optical properties of human normal bladder tissue at a certain wavelength of laser and its linearly polarized laser had obvious distinction. And optical properties of human bladder cancer tissue at a certain wavelength of laser and its linearly polarized laser irradiation had not prominent distinction. Attenuation of all of the forward scattered photon fluxes i(x), the backward scattered photon fluxes i(x), the total scattered photon fluxes I(x) of human bladder cancer tissue at 532 nm and 808 nm laser and their linearly polarized laser irradiation is obviously bigger than one of human normal bladder tissue. And that light intensities of their forward scattered photon fluxes i(x) was obviously bigger than one of their backward scattered photon fluxes j(x).

Key words human normal bladder and bladder cancer tissues, optical properties, 532 nm and 808 nm laser, a double-integrating-sphere system, linearly polarized laser

^{*} This work was supported by grants from The National Major Fundamental Research Project of China (2002CCC00400) and The Team Project of Natural Science Foundation of Guangdong Province (015012).

^{**}Corresponding author. Tel: 86-20-85210089, E-mail: xingda @hsut.scnu.edu.cn

Received : September 16 , 2002 Accepted : November 1 , 2002